All Publications


  • Modular, programmable RNA sensing using ADAR editing in living cells. Nature biotechnology Kaseniit, K. E., Katz, N., Kolber, N. S., Call, C. C., Wengier, D. L., Cody, W. B., Sattely, E. S., Gao, X. J. 2022

    Abstract

    With the increasing availability of single-cell transcriptomes, RNA signatures offer a promising basis for targeting living cells. Molecular RNA sensors would enable the study of and therapeutic interventions for specific cell types/states in diverse contexts, particularly in human patients and non-model organisms. Here we describe a modular, programmable system for live RNA sensing using adenosine deaminases acting on RNA (RADAR). We validate, and then expand, our basic design, characterize its performance, and analyze its compatibility with human and mouse transcriptomes. We identify strategies to boost output levels and improve the dynamic range. Additionally, we show that RADAR enables compact AND logic. In addition to responding to transcript levels, RADAR can distinguish disease-relevant sequence alterations of transcript identities, such as point mutations and fusions. Finally, we demonstrate that RADAR is a self-contained system with the potential to function in diverse organisms.

    View details for DOI 10.1038/s41587-022-01493-x

    View details for PubMedID 36198772

  • Orthogonal translation enables heterologous ribosome engineering in E. coli. Nature communications Kolber, N. S., Fattal, R., Bratulic, S., Carver, G. D., Badran, A. H. 2021; 12 (1): 599

    Abstract

    The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.

    View details for DOI 10.1038/s41467-020-20759-z

    View details for PubMedID 33500394