Professional Education


  • Doctor of Philosophy, Stanford University, CHEM-PHD (2014)
  • Bachelor of Science, Fudan University, Chemistry (2009)

Stanford Advisors


All Publications


  • Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Zhao, J., Lu, Z., Wang, H., Liu, W., Lee, H., Yan, K., Zhuo, D., Lin, D., Liu, N., Cui, Y. 2015; 137 (26): 8372-8375

    Abstract

    Prelithiation is an important strategy to compensate for lithium loss in lithium-ion batteries, particularly during the formation of the solid electrolyte interphase (SEI) from reduced electrolytes in the first charging cycle. We recently demonstrated that LixSi nanoparticles (NPs) synthesized by thermal alloying can serve as a high-capacity prelithiation reagent, although their chemical stability in the battery processing environment remained to be improved. Here we successfully developed a surface modification method to enhance the stability of LixSi NPs by exploiting the reduction of 1-fluorodecane on the LixSi surface to form a continuous and dense coating through a reaction process similar to SEI formation. The coating, consisting of LiF and lithium alkyl carbonate with long hydrophobic carbon chains, serves as an effective passivation layer in the ambient environment. Remarkably, artificial-SEI-protected LixSi NPs show a high prelithiation capacity of 2100 mA h g(-1) with negligible capacity decay in dry air after 5 days and maintain a high capacity of 1600 mA h g(-1) in humid air (∼10% relative humidity). Silicon, tin, and graphite were successfully prelithiated with these NPs to eliminate the irreversible first-cycle capacity loss. The use of prelithiation reagents offers a new approach to realize next-generation high-energy-density lithium-ion batteries.

    View details for DOI 10.1021/jacs.5b04526

    View details for Web of Science ID 000357964400015

    View details for PubMedID 26091423

  • A Novel Phase of Li15Si4 Synthesized under Pressure ADVANCED ENERGY MATERIALS Zeng, Z., Zeng, Q., Liu, N., Oganov, A. R., Zeng, Q., Cui, Y., Mao, W. L. 2015; 5 (12)
  • Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery ACS NANO Luo, L., Yang, H., Yan, P., Travis, J. J., Lee, Y., Liu, N., Piper, D. M., Lee, S., Zhao, P., George, S. M., Zhang, J., Cui, Y., Zhang, S., Ban, C., Wang, C. 2015; 9 (5): 5559-5566

    Abstract

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found that nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (∼5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a "V-shaped" lithiation front of the SiNWs, while the Al2O3 coating yields an "H-shaped" lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk lithiation rate of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

    View details for DOI 10.1021/acsnano.5b01681

    View details for Web of Science ID 000355383000093

    View details for PubMedID 25893684

  • Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes NANO LETTERS Liang, Z., Zheng, G., Liu, C., Liu, N., Li, W., Yan, K., Yao, H., Hsu, P., Chu, S., Cui, Y. 2015; 15 (5): 2910-2916

    Abstract

    Lithium metal is one of the most promising candidates as an anode material for next-generation energy storage systems due to its highest specific capacity (3860 mAh/g) and lowest redox potential of all. The uncontrolled lithium dendrite growth that causes a poor cycling performance and serious safety hazards, however, presents a significant challenge for the realization of lithium metal-based batteries. Here, we demonstrate a novel electrode design by placing a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fiber with polar surface functional groups could guide the lithium ions to form uniform lithium metal deposits confined on the polymer fiber surface and in the 3D polymer layer. We showed stable cycling of lithium metal anode with an average Coulombic efficiency of 97.4% over 120 cycles in ether-based electrolyte at a current density of 3 mA/cm(2) for a total of 1 mAh/cm(2) of lithium.

    View details for DOI 10.1021/nl5046318

    View details for Web of Science ID 000354906000021

    View details for PubMedID 25822282

  • Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers NANO LETTERS Liu, W., Liu, N., Sun, J., Hsu, P., Li, Y., Lee, H., Cui, Y. 2015; 15 (4): 2740-2745

    Abstract

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.

    View details for DOI 10.1021/acs.nanolett.5b00600

    View details for Web of Science ID 000352750200080

    View details for PubMedID 25782069

  • Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes ACS NANO Lu, Z., Liu, N., Lee, H., Zhao, J., Li, W., Li, Y., Cui, Y. 2015; 9 (3): 2540-2547

    Abstract

    Silicon is widely recognized as one of the most promising anode materials for lithium-ion batteries due to its 10 times higher specific capacity than graphite. Unfortunately, the large volume change of Si materials during their lithiation/delithiation process results in severe pulverization, loss of electrical contact, unstable solid-electrolyte interphase (SEI), and eventual capacity fading. Although there has been tremendous progress to overcome these issues through nanoscale materials design, improved volumetric capacity and reduced cost are still needed for practical application. To address these issues, we design a nonfilling carbon-coated porous silicon microparticle (nC-pSiMP). In this structure, porous silicon microparticles (pSiMPs) consist of many interconnected primary silicon nanoparticles; only the outer surface of the pSiMPs was coated with carbon, leaving the interior pore structures unfilled. Nonfilling carbon coating hinders electrolyte penetration into the nC-pSiMPs, minimizes the electrode-electrolyte contact area, and retains the internal pore space for Si expansion. SEI formation is mostly limited to the outside of the microparticles. As a result, the composite structure demonstrates excellent cycling stability with high reversible specific capacity (∼1500 mAh g(-1), 1000 cycles) at the rate of C/4. The nC-pSiMPs contain accurate void space to accommodate Si expansion while not losing packing density, which allows for a high volumetric capacity (∼1000 mAh cm(-3)). The areal capacity can reach over 3 mAh cm(-2) with the mass loading 2.01 mg cm(-2). Moreover, the production of nC-pSiMP is simple and scalable using a low-cost silicon monoxide microparticle starting material.

    View details for DOI 10.1021/nn505410q

    View details for Web of Science ID 000351791800030

    View details for PubMedID 25738223

  • Transparent air filter for high-efficiency PM2.5 capture. Nature communications Liu, C., Hsu, P., Lee, H., Ye, M., Zheng, G., Liu, N., Li, W., Cui, Y. 2015; 6: 6205-?

    Abstract

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

    View details for DOI 10.1038/ncomms7205

    View details for PubMedID 25683688

  • Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries NATURE COMMUNICATIONS Lee, H., Wang, R. Y., Pasta, M., Lee, S. W., Liu, N., Cui, Y. 2014; 5

    View details for DOI 10.1038/ncomms6280

    View details for Web of Science ID 000343985900004

  • Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents NATURE COMMUNICATIONS Zhao, J., Lu, Z., Liu, N., Lee, H., McDowell, M. T., Cui, Y. 2014; 5

    View details for DOI 10.1038/ncomms6088

    View details for Web of Science ID 000343978000005

  • Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano letters Sun, J., Zheng, G., Lee, H., Liu, N., Wang, H., Yao, H., Yang, W., Cui, Y. 2014; 14 (8): 4573-4580

    Abstract

    High specific capacity battery electrode materials have attracted great research attention. Phosphorus as a low-cost abundant material has a high theoretical specific capacity of 2596 mAh/g with most of its capacity at the discharge potential range of 0.4-1.2 V, suitable as anodes. Although numerous research progress have shown other high capacity anodes such as Si, Ge, Sn, and SnO2, there are only a few studies on phosphorus anodes despite its high theoretical capacity. Successful applications of phosphorus anodes have been impeded by rapid capacity fading, mainly caused by large volume change (around 300%) upon lithiation and thus loss of electrical contact. Using the conducting allotrope of phosphorus, "black phosphorus" as starting materials, here we fabricated composites of black phosphorus nanoparticle-graphite by mechanochemical reaction in a high energy mechanical milling process. This process produces phosphorus-carbon bonds, which are stable during lithium insertion/extraction, maintaining excellent electrical connection between phosphorus and carbon. We demonstrated high initial discharge capacity of 2786 mAh·g(-1) at 0.2 C and an excellent cycle life of 100 cycles with 80% capacity retention. High specific discharge capacities are maintained at fast C rates (2270, 1750, 1500, and 1240 mAh·g(-1) at C/5, 1, 2, and 4.5 C, respectively).

    View details for DOI 10.1021/nl501617j

    View details for PubMedID 25019417

  • Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries CHEMISTRY OF MATERIALS Lim, L. Y., Liu, N., Cui, Y., Toney, M. F. 2014; 26 (12): 3739-3746

    View details for DOI 10.1021/cm501233k

    View details for Web of Science ID 000338089500024

  • Nanomaterials for electrochemical energy storage FRONTIERS OF PHYSICS Liu, N., Li, W., Pasta, M., Cui, Y. 2014; 9 (3): 323-350
  • A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes NATURE NANOTECHNOLOGY Liu, N., Lu, Z., Zhao, J., McDowell, M. T., Lee, H., Zhao, W., Cui, Y. 2014; 9 (3): 187-192

    Abstract

    Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm(-2)).

    View details for DOI 10.1038/NNANO.2014.6

    View details for Web of Science ID 000332637200011

    View details for PubMedID 24531496

  • Full open-framework batteries for stationary energy storage NATURE COMMUNICATIONS Pasta, M., Wessells, C. D., Liu, N., Nelson, J., McDowell, M. T., Huggins, R. A., Toney, M. F., Cui, Y. 2014; 5

    View details for DOI 10.1038/ncomms4007

    View details for Web of Science ID 000331082900006

  • High-capacity Li2S-graphene oxide composite cathodes with stable cycling performance CHEMICAL SCIENCE Seh, Z. W., Wang, H., Liu, N., Zheng, G., Li, W., Yao, H., Cui, Y. 2014; 5 (4): 1396-1400

    View details for DOI 10.1039/c3sc52789a

    View details for Web of Science ID 000332467400017

  • Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries JOURNAL OF POWER SOURCES Zeng, Z., Liu, N., Zeng, Q., Ding, Y., Qu, S., Cui, Y., Mao, W. L. 2013; 242: 732-735
  • Microbial battery for efficient energy recovery PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Xie, X., Ye, M., Hsu, P., Liu, N., Criddle, C. S., Cui, Y. 2013; 110 (40): 15925-15930

    Abstract

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

    View details for DOI 10.1073/pnas.1307327110

    View details for Web of Science ID 000325105500034

  • Conducting Nanosponge Electroporation for Affordable and High-Efficiency Disinfection of Bacteria and Viruses in Water NANO LETTERS Liu, C., Xie, X., Zhao, W., Liu, N., Maraccini, P. A., Sassoubre, L. M., Boehm, A. B., Cui, Y. 2013; 13 (9): 4288-4293

    Abstract

    High-efficiency, affordable, and low energy water disinfection methods are in great need to prevent diarrheal illness, which is one of the top five leading causes of death over the world. Traditional water disinfection methods have drawbacks including carcinogenic disinfection byproducts formation, energy and time intensiveness, and pathogen recovery. Here, we report an innovative method that achieves high-efficiency water disinfection by introducing nanomaterial-assisted electroporation implemented by a conducting nanosponge filtration device. The use of one-dimensional (1D) nanomaterials allows electroporation to occur at only several volts, which is 2 to 3 orders of magnitude lower than that in traditional electroporation applications. The disinfection mechanism of electroporation prevents harmful byproduct formation and ensures a fast treatment speed of 15 000 L/(h·m(2)), which is equal to a contact time of 1 s. The conducting nanosponge made from low-cost polyurethane sponge coated with carbon nanotubes and silver nanowires ensures the device's affordability. This method achieves more than 6 log (99.9999%) removal of four model bacteria, including Escherichia coli, Salmonella enterica Typhimirium, Enterococcus faecalis, and Bacillus subtilis, and more than 2 log (99%) removal of one model virus, bacteriophage MS2, with a low energy consumption of only 100 J/L.

    View details for DOI 10.1021/nl402053z

    View details for Web of Science ID 000330158900051

  • MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano letters Wang, H., Kong, D., Johanes, P., Cha, J. J., Zheng, G., Yan, K., Liu, N., Cui, Y. 2013; 13 (7): 3426-3433

    Abstract

    Two-dimensional (2D) layered materials exhibit high anisotropy in materials properties due to the large difference of intra- and interlayer bonding. This presents opportunities to engineer materials whose properties strongly depend on the orientation of the layers relative to the substrate. Here, using a similar growth process reported in our previous study of MoS2 and MoSe2 films whose layers were oriented vertically on flat substrates, we demonstrate that the vertical layer orientation can be realized on curved and rough surfaces such as nanowires (NWs) and microfibers. Such structures can increase the surface area while maintaining the perpendicular orientation of the layers, which may be useful in enhancing various catalytic activities. We show vertically aligned MoSe2 and WSe2 nanofilms on Si NWs and carbon fiber paper. We find that MoSe2 and WSe2 nanofilms on carbon fiber paper are highly efficient electrocatalysts for hydrogen evolution reaction (HER) compared to flat substrates. Both materials exhibit extremely high stability in acidic solution as the HER catalytic activity shows no degradation after 15 000 continuous potential cycles. The HER activity of MoSe2 is further improved by Ni doping.

    View details for DOI 10.1021/nl401944f

    View details for PubMedID 23799638

  • MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces NANO LETTERS Wang, H., Kong, D., Johanes, P., Cha, J. J., Zheng, G., Yan, K., Liu, N., Cui, Y. 2013; 13 (7): 3426-3433

    View details for DOI 10.1021/nl401944f

    View details for Web of Science ID 000321884300069

  • Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes NANO LETTERS Yao, H., Zheng, G., Li, W., McDowell, M. T., Seh, Z., Liu, N., Lu, Z., Cui, Y. 2013; 13 (7): 3385-3390

    View details for DOI 10.1021/nl401729r

    View details for Web of Science ID 000321884300062

  • Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles NATURE COMMUNICATIONS Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M. T., Bao, Z., Cui, Y. 2013; 4

    View details for DOI 10.1038/ncomms2941

    View details for Web of Science ID 000323624100010

  • Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes SCIENTIFIC REPORTS Liu, N., Huo, K., McDowell, M. T., Zhao, J., Cui, Y. 2013; 3

    View details for DOI 10.1038/srep01919

    View details for Web of Science ID 000319554000001

  • High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Li, W., Zheng, G., Yang, Y., Seh, Z. W., Liu, N., Cui, Y. 2013; 110 (18): 7148-7153

    Abstract

    Sulfur is an exciting cathode material with high specific capacity of 1,673 mAh/g, more than five times the theoretical limits of its transition metal oxides counterpart. However, successful applications of sulfur cathode have been impeded by rapid capacity fading caused by multiple mechanisms, including large volume expansion during lithiation, dissolution of intermediate polysulfides, and low ionic/electronic conductivity. Tackling the sulfur cathode problems requires a multifaceted approach, which can simultaneously address the challenges mentioned above. Herein, we present a scalable, room temperature, one-step, bottom-up approach to fabricate monodisperse polymer (polyvinylpyrrolidone)-encapsulated hollow sulfur nanospheres for sulfur cathode, allowing unprecedented control over electrode design from nanoscale to macroscale. We demonstrate high specific discharge capacities at different current rates (1,179, 1,018, and 990 mAh/g at C/10, C/5, and C/2, respectively) and excellent capacity retention of 77.6% (at C/5) and 73.4% (at C/2) after 300 and 500 cycles, respectively. Over a long-term cycling of 1,000 cycles at C/2, a capacity decay as low as 0.046% per cycle and an average coulombic efficiency of 98.5% was achieved. In addition, a simple modification on the sulfur nanosphere surface with a layer of conducting polymer, poly(3,4-ethylenedioxythiophene), allows the sulfur cathode to achieve excellent high-rate capability, showing a high reversible capacity of 849 and 610 mAh/g at 2C and 4C, respectively.

    View details for DOI 10.1073/pnas.1220992110

    View details for Web of Science ID 000318682300021

  • Silicon-conductive nanopaper for Li-ion batteries NANO ENERGY Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wagberg, L., Cui, Y. 2013; 2 (1): 138-145
  • Nanoporous silicon networks as anodes for lithium ion batteries PHYSICAL CHEMISTRY CHEMICAL PHYSICS Zhu, J., Gladden, C., Liu, N., Cui, Y., Zhang, X. 2013; 15 (2): 440-443

    Abstract

    Nanoporous silicon (Si) networks with controllable porosity and thickness are fabricated by a simple and scalable electrochemical process, and then released from Si wafers and transferred to flexible and conductive substrates. These nanoporous Si networks serve as high performance Li-ion battery electrodes, with an initial discharge capacity of 2570 mA h g(-1), above 1000 mA h g(-1) after 200 cycles without any electrolyte additives.

    View details for DOI 10.1039/c2cp44046f

    View details for Web of Science ID 000311963600004

    View details for PubMedID 23183772

  • Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Pan, L., Yu, G., Zhai, D., Lee, H. R., Zhao, W., Liu, N., Wang, H., Tee, B. C., Shi, Y., Cui, Y., Bao, Z. 2012; 109 (24): 9287-9292

    Abstract

    Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (~480 F·g(-1)), unprecedented rate capability, and cycling stability (~83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (~0.3 s) and superior sensitivity (~16.7 ?A · mM(-1)). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.

    View details for DOI 10.1073/pnas.1202636109

    View details for Web of Science ID 000305511300024

    View details for PubMedID 22645374

  • A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes NANO LETTERS Liu, N., Wu, H., McDowell, M. T., Yao, Y., Wang, C., Cui, Y. 2012; 12 (6): 3315-3321

    Abstract

    Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (?2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.

    View details for DOI 10.1021/nl3014814

    View details for Web of Science ID 000305106400110

    View details for PubMedID 22551164

  • In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes ACS NANO Misra, S., Liu, N., Nelson, J., Hong, S. S., Cui, Y., Toney, M. F. 2012; 6 (6): 5465-5473

    Abstract

    Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li(15)Si(4) phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes.

    View details for DOI 10.1021/nn301339g

    View details for Web of Science ID 000305661300100

    View details for PubMedID 22558938

  • Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes NANO LETTERS Wu, H., Zheng, G., Liu, N., Carney, T. J., Yang, Y., Cui, Y. 2012; 12 (2): 904-909

    Abstract

    Silicon is a promising high-capacity anode material for lithium-ion batteries yet attaining long cycle life remains a significant challenge due to pulverization of the silicon and unstable solid-electrolyte interphase (SEI) formation during the electrochemical cycles. Despite significant advances in nanostructured Si electrodes, challenges including short cycle life and scalability hinder its widespread implementation. To address these challenges, we engineered an empty space between Si nanoparticles by encapsulating them in hollow carbon tubes. The synthesis process used low-cost Si nanoparticles and electrospinning methods, both of which can be easily scaled. The empty space around the Si nanoparticles allowed the electrode to successfully overcome these problems Our anode demonstrated a high gravimetric capacity (~1000 mAh/g based on the total mass) and long cycle life (200 cycles with 90% capacity retention).

    View details for DOI 10.1021/nl203967r

    View details for Web of Science ID 000299967800063

    View details for PubMedID 22224827

  • Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes ENERGY & ENVIRONMENTAL SCIENCE Xie, X., Ye, M., Hu, L., Liu, N., McDonough, J. R., Chen, W., Alshareef, H. N., Criddle, C. S., Cui, Y. 2012; 5 (1): 5265-5270

    View details for DOI 10.1039/c1ee02122b

    View details for Web of Science ID 000299046100016

  • Symmetrical MnO2-Carbon Nanotube-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading ACS NANO Hu, L., Chen, W., Xie, X., Liu, N., Yang, Y., Wu, H., Yao, Y., Pasta, M., Alshareef, H. N., Cui, Y. 2011; 5 (11): 8904-8913

    Abstract

    While MnO(2) is a promising material for pseudocapacitor applications due to its high specific capacity and low cost, MnO(2) electrodes suffer from their low electrical and ionic conductivities. In this article, we report a structure where MnO(2) nanoflowers were conformally electrodeposited onto carbon nanotube (CNT)-enabled conductive textile fibers. Such nanostructures effectively decrease the ion diffusion and charge transport resistance in the electrode. For a given areal mass loading, the thickness of MnO(2) on conductive textile fibers is much smaller than that on a flat metal substrate. Such a porous structure also allows a large mass loading, up to 8.3 mg/cm(2), which leads to a high areal capacitance of 2.8 F/cm(2) at a scan rate of 0.05 mV/s. Full cells were demonstrated, where the MnO(2)-CNT-textile was used as a positive electrode, reduced MnO(2)-CNT-textile as a negative electrode, and 0.5 M Na(2)SO(4) in water as the electrolyte. The resulting pseudocapacitor shows promising results as a low-cost energy storage solution and an attractive wearable power.

    View details for DOI 10.1021/nn203085j

    View details for Web of Science ID 000297143300051

    View details for PubMedID 21923135

  • Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping NANO LETTERS Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., Bao, Z. 2011; 11 (10): 4438-4442

    Abstract

    MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conductive wrapping" method to greatly improve the supercapacitor performance of graphene/MnO2-based nanostructured electrodes. By three-dimensional (3D) conductive wrapping of graphene/MnO2 nanostructures with carbon nanotubes or conducting polymer, specific capacitance of the electrodes (considering total mass of active materials) has substantially increased by ?20% and ?45%, respectively, with values as high as ?380 F/g achieved. Moreover, these ternary composite electrodes have also exhibited excellent cycling performance with >95% capacitance retention over 3000 cycles. This 3D conductive wrapping approach represents an exciting direction for enhancing the device performance of metal oxide-based electrochemical supercapacitors and can be generalized for designing next-generation high-performance energy storage devices.

    View details for DOI 10.1021/nl2026635

    View details for Web of Science ID 000295667000073

    View details for PubMedID 21942427

  • Highly Conductive, Mechanically Robust, and Electrochemically Inactive TiC/C Nanofiber Scaffold for High-Performance Silicon Anode Batteries ACS NANO Yao, Y., Huo, K., Hu, L., Liu, N., Ha, J. J., McDowell, M. T., Chu, P. K., Cui, Y. 2011; 5 (10): 8346-8351

    Abstract

    Silicon has a high specific capacity of 4200 mAh/g as lithium-ion battery anodes, but its rapid capacity fading due to >300% volume expansion and pulverization presents a significant challenge for practical applications. Here we report a core-shell TiC/C/Si inactive/active nanocomposite for Si anodes demonstrating high specific capacity and excellent electrochemical cycling. The amorphous silicon layer serves as the active material to store Li(+), while the inactive TiC/C nanofibers act as a conductive and mechanically robust scaffold for electron transport during the Li-Si alloying process. The core-shell TiC/C/Si nanocomposite anode shows ?3000 mAh g(-1) discharge capacity and 92% capacity retention after 100 charge/discharge cycles. The excellent cycling stability and high rate performance could be attributed to the tapering of the nanofibers and the open structure that allows facile Li ion transport and the high conductivity and mechanical stability of the TiC/C scaffold.

    View details for DOI 10.1021/nn2033693

    View details for Web of Science ID 000296208700090

    View details for PubMedID 21974912

  • Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life NANO LETTERS Yao, Y., McDowell, M. T., Ryu, I., Wu, H., Liu, N., Hu, L., Nix, W. D., Cui, Y. 2011; 11 (7): 2949-2954

    Abstract

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g(-1) with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure.

    View details for DOI 10.1021/nl201470j

    View details for Web of Science ID 000292849400066

    View details for PubMedID 21668030