Nicholas Melosh
Professor of Materials Science and Engineering
Bio
The Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.
Research Interests:
Bio-inorganic Interface
Molecular materials at interfaces
Self-Assembly and Nucleation and Growth
Academic Appointments
-
Professor, Materials Science and Engineering
-
Member, Bio-X
-
Affiliate, Precourt Institute for Energy
-
Faculty Fellow, Sarafan ChEM-H
-
Member, Wu Tsai Neurosciences Institute
Professional Education
-
PhD, University of California at Santa Barbara, Materials Science and Engineering (2001)
-
BS, Harvey Mudd College, Chemistry (1996)
2024-25 Courses
- Materials Matter
MATSCI 10 (Aut) -
Independent Studies (10)
- Directed Investigation
BIOE 392 (Aut, Win, Spr) - Directed Study
BIOE 391 (Aut, Win, Spr) - Graduate Independent Study
MATSCI 399 (Aut, Win, Spr) - Master's Research
MATSCI 200 (Aut, Win, Spr) - Participation in Materials Science Teaching
MATSCI 400 (Aut, Win, Spr) - Ph.D. Research
MATSCI 300 (Aut, Win, Spr) - Practical Training
MATSCI 299 (Aut, Win, Spr) - Research
PHYSICS 490 (Aut, Win, Spr) - Undergraduate Independent Study
MATSCI 100 (Aut, Win, Spr) - Undergraduate Research
MATSCI 150 (Aut, Win, Spr)
- Directed Investigation
-
Prior Year Courses
2023-24 Courses
- Materials Matter
MATSCI 10 (Aut) - Nano-Biotechnology
MATSCI 380 (Spr)
- Materials Matter
Stanford Advisees
-
Doctoral Dissertation Reader (AC)
Yueming Liu -
Doctoral Dissertation Advisor (AC)
Tyler Chen, Siddharth Doshi -
Doctoral Dissertation Co-Advisor (AC)
Andrew Shin -
Doctoral (Program)
Andrew Shin
All Publications
-
NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions.
AIP advances
2024; 14 (8): 085109
Abstract
Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created "NeuroRoots," a biomimetic multi-channel implant with similar dimensions (7 μm wide and 1.5 μm thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode "roots," each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.
View details for DOI 10.1063/5.0216979
View details for PubMedID 39130131
View details for PubMedCentralID PMC11309783
-
Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm2 area.
Biosensors & bioelectronics
2024; 261: 116474
Abstract
Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.
View details for DOI 10.1016/j.bios.2024.116474
View details for PubMedID 38870827
-
Enhanced Thin-Film Encapsulation Through Micron-Scale Anchors
ADVANCED FUNCTIONAL MATERIALS
2024
View details for DOI 10.1002/adfm.202402661
View details for Web of Science ID 001216273400001
-
Direct electron beam patterning of electro-optically active PEDOT:PSS.
Nanophotonics
2024; 13 (12): 2271-2280
Abstract
The optical and electronic tunability of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has enabled emerging applications as diverse as bioelectronics, flexible electronics, and micro- and nano-photonics. High-resolution spatial patterning of PEDOT:PSS opens up opportunities for novel active devices in a range of fields. However, typical lithographic processes require tedious indirect patterning and dry etch processes, while solution-processing methods such as ink-jet printing have limited spatial resolution. Here, we report a method for direct write nano-patterning of commercially available PEDOT:PSS through electron-beam induced solubility modulation. The written structures are water stable and maintain the conductivity as well as electrochemical and optical properties of PEDOT:PSS, highlighting the broad utility of our method. We demonstrate the potential of our strategy by preparing prototypical nano-wire structures with feature sizes down to 250 nm, an order of magnitude finer than previously reported direct write methods, opening the possibility of writing chip-scale microelectronic and optical devices. We finally use the high-resolution writing capabilities to fabricate electrically-switchable optical diffraction gratings. We show active switching in this archetypal system with >95 % contrast at CMOS-compatible voltages of +2 V and -3 V, offering a route towards highly-miniaturized dynamic optoelectronic devices.
View details for DOI 10.1515/nanoph-2023-0640
View details for PubMedID 38774765
View details for PubMedCentralID PMC11104293
-
Unraveling sources of emission heterogeneity in Silicon Vacancy color centers with cryo-cathodoluminescence microscopy.
Proceedings of the National Academy of Sciences of the United States of America
2024; 121 (14): e2308247121
Abstract
Diamond color centers have proven to be versatile quantum emitters and exquisite sensors of stress, temperature, electric and magnetic fields, and biochemical processes. Among color centers, the silicon-vacancy (SiV[Formula: see text]) defect exhibits high brightness, minimal phonon coupling, narrow optical linewidths, and high degrees of photon indistinguishability. Yet the creation of reliable and scalable SiV[Formula: see text]-based color centers has been hampered by heterogeneous emission, theorized to originate from surface imperfections, crystal lattice strain, defect symmetry, or other lattice impurities. Here, we advance high-resolution cryo-electron microscopy combined with cathodoluminescence spectroscopy and 4D scanning transmission electron microscopy (STEM) to elucidate the structural sources of heterogeneity in SiV[Formula: see text] emission from nanodiamond with sub-nanometer-scale resolution. Our diamond nanoparticles are grown directly on TEM membranes from molecular-level seedings, representing the natural formation conditions of color centers in diamond. We show that individual subcrystallites within a single nanodiamond exhibit distinct zero-phonon line (ZPL) energies and differences in brightness that can vary by 0.1 meV in energy and over 70% in brightness. These changes are correlated with the atomic-scale lattice structure. We find that ZPL blue-shifts result from tensile strain, while ZPL red shifts are due to compressive strain. We also find that distinct crystallites host distinct densities of SiV[Formula: see text] emitters and that grain boundaries impact SiV[Formula: see text] emission significantly. Finally, we interrogate nanodiamonds as small as 40 nm in diameter and show that these diamonds exhibit no spatial change to their ZPL energy. Our work provides a foundation for atomic-scale structure-emission correlation, e.g., of single atomic defects in a range of quantum and two-dimensional materials.
View details for DOI 10.1073/pnas.2308247121
View details for PubMedID 38551833
-
Direct electron beam patterning of electro-optically active PEDOT:PSS
NANOPHOTONICS
2024
View details for DOI 10.1515/nanoph-2023-0640
View details for Web of Science ID 001135766900001
-
Efficient Photonic Integration of Diamond Color Centers and Thin-Film Lithium Niobate
ACS PHOTONICS
2023; 10 (12): 4236-4243
View details for DOI 10.1021/acsphotonics.3c00992
View details for Web of Science ID 001128748300001
-
A CMOS-based highly scalable flexible neural electrode interface.
Science advances
2023; 9 (23): eadf9524
Abstract
Perception, thoughts, and actions are encoded by the coordinated activity of large neuronal populations spread over large areas. However, existing electrophysiological devices are limited by their scalability in capturing this cortex-wide activity. Here, we developed an electrode connector based on an ultra-conformable thin-film electrode array that self-assembles onto silicon microelectrode arrays enabling multithousand channel counts at a millimeter scale. The interconnects are formed using microfabricated electrode pads suspended by thin support arms, termed Flex2Chip. Capillary-assisted assembly drives the pads to deform toward the chip surface, and van der Waals forces maintain this deformation, establishing Ohmic contact. Flex2Chip arrays successfully measured extracellular action potentials ex vivo and resolved micrometer scale seizure propagation trajectories in epileptic mice. We find that seizure dynamics in absence epilepsy in the Scn8a+/- model do not have constant propagation trajectories.
View details for DOI 10.1126/sciadv.adf9524
View details for PubMedID 37285436
View details for PubMedCentralID PMC10246892
-
Direct-print three-dimensional electrodes for large- scale, high-density, and customizable neural inter- faces.
bioRxiv : the preprint server for biology
2023
Abstract
Silicon-based planar microelectronics is a powerful tool for scalably recording and modulating neural activity at high spatiotemporal resolution, but it remains challenging to target neural structures in three dimensions (3D). We present a method for directly fabricating 3D arrays of tissue-penetrating microelectrodes onto silicon microelectronics. Leveraging a high-resolution 3D printing technology based on 2-photon polymerization and scalable microfabrication processes, we fabricated arrays of 6,600 microelectrodes 10-130 μm tall and at 35-μm pitch onto a planar silicon-based microelectrode array. The process enables customizable electrode shape, height and positioning for precise targeting of neuron populations distributed in 3D. As a proof of concept, we addressed the challenge of specifically targeting retinal ganglion cell (RGC) somas when interfacing with the retina. The array was customized for insertion into the retina and recording from somas while avoiding the axon layer. We verified locations of the microelectrodes with confocal microscopy and recorded high-resolution spontaneous RGC activity at cellular resolution. This revealed strong somatic and dendritic components with little axon contribution, unlike recordings with planar microelectrode arrays. The technology could be a versatile solution for interfacing silicon microelectronics with neural structures and modulating neural activity at large scale with single-cell resolution.
View details for DOI 10.1101/2023.05.30.542925
View details for PubMedID 37398164
View details for PubMedCentralID PMC10312573
-
On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer.
ACS nano
2023
Abstract
The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affinity separations, assays, and solid-phase extraction. However, MIP sensors are typically limited to one-time use due to their high binding affinity (>107 M-1) and slow-release kinetics (<10-4 muM/sec). To overcome this challenge, current research has focused on stimuli-responsive MIPs (SR-MIPs), which undergo a conformational change induced by external stimuli to reverse molecular binding, requiring additional chemicals or outside stimuli. Here, we demonstrate fully reversible MIP sensors based on electrostatic repulsion. Once the target analyte is bound within a thin film MIP on an electrode, a small electrical potential successfully releases the bound molecules, enabling repeated, accurate measurements. We demonstrate an electrostatically refreshed dopamine sensor with a 760 pM limit of detection, linear response profile, and accuracy even after 30 sensing-release cycles. These sensors could repeatedly detect <1 nM dopamine released from PC-12 cells in vitro, demonstrating they can longitudinally measure low concentrations in complex biological environments without clogging. Our work provides a simple and effective strategy for enhancing the use of MIPs-based biosensors for all charged molecules in continuous, real-time health monitoring and other sensing applications.
View details for DOI 10.1021/acsnano.2c11618
View details for PubMedID 36913954
-
Decoding and Modulation of Spiking Activity of the Sciatic Nerve in an Awake and Moving Rodent
WILEY. 2023: 267-268
View details for Web of Science ID 001005693800058
-
An integrated perspective for the diagnosis and therapy of neurodevelopmental disorders - From an engineering point of view.
Advanced drug delivery reviews
2023; 194: 114723
Abstract
Neurodevelopmental disorders (NDDs) are complex conditions with largely unknown pathophysiology. While many NDD symptoms are familiar, the cause of these disorders remains unclear and may involve a combination of genetic, biological, psychosocial, and environmental risk factors. Current diagnosis relies heavily on behaviorally defined criteria, which may be biased by the clinical team's professional and cultural expectations, thus a push for new biological-based biomarkers for NDDs diagnosis is underway. Emerging new research technologies offer an unprecedented view into the electrical, chemical, and physiological activity in the brain and with further development in humans may provide clinically relevant diagnoses. These could also be extended to new treatment options, which can start to address the underlying physiological issues. When combined with current speech, language, occupational therapy, and pharmacological treatment these could greatly improve patient outcomes. The current review will discuss the latest technologies that are being used or may be used for NDDs diagnosis and treatment. The aim is to provide an inspiring and forward-looking view for future research in the field.
View details for DOI 10.1016/j.addr.2023.114723
View details for PubMedID 36746077
-
Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection.
Cell reports methods
2022; 2 (10): 100298
Abstract
Planarians have long been studied for their regenerative abilities. Moving forward, tools for ectopic expression of non-native proteins will be of substantial value. Using a luminescent reporter to overcome the strong autofluorescence of planarian tissues, we demonstrate heterologous protein expression in planarian cells and live animals. Our approach is based on the introduction of mRNA through several nanotechnological and chemical transfection methods. We improve reporter expression by altering untranslated region (UTR) sequences and codon bias, facilitating the measurement of expression kinetics in both isolated cells and whole planarians using luminescence imaging. We also examine protein expression as a function of variations in the UTRs of delivered mRNA, demonstrating a framework to investigate gene regulation at the post-transcriptional level. Together, these advances expand the toolbox for the mechanistic analysis of planarian biology and establish a foundation for the development and expansion of transgenic techniques in this unique model system.
View details for DOI 10.1016/j.crmeth.2022.100298
View details for PubMedID 36313809
-
Wafer-scale microfabrication of flexible organic electrochemical transistors
FLEXIBLE AND PRINTED ELECTRONICS
2022; 7 (3)
View details for DOI 10.1088/2058-8585/ac808a
View details for Web of Science ID 000830294500001
-
Ag-Diamond Core-Shell Nanostructures Incorporated with Silicon-Vacancy Centers.
ACS materials Au
2022; 2 (2): 85-93
Abstract
Silicon-vacancy (SiV) centers in diamond have attracted attention as highly stable fluorophores for sensing and as possible candidates for quantum information science. While prior studies have shown that the formation of hybrid diamond-metal structures can increase the rates of optical absorption and emission, many practical applications require diamond plasmonic structures that are stable in harsh chemical and thermal environments. Here, we demonstrate that Ag nanospheres, produced both in quasi-random arrays by thermal dewetting and in ordered arrays using electron-beam lithography, can be completely encapsulated with a thin diamond coating containing SiV centers, leading to hybrid core-shell nanostructures exhibiting extraordinary chemical and thermal stability as well as enhanced optical properties. Diamond shells with a thickness on the order of 20-100 nm are sufficient to encapsulate and protect the Ag nanostructures with different sizes ranging from 20 nm to hundreds of nanometers, allowing them to withstand heating to temperatures of 1000 °C and immersion in harsh boiling acid for 24 h. Ultrafast photoluminescence lifetime and super-resolution optical imaging experiments were used to study the SiV properties on and off the core-shell structures, which show that the SiV on core-shell structures have higher brightness and faster decay rate. The stability and optical properties of the hybrid Ag-diamond core-shell structures make them attractive candidates for high-efficiency imaging and quantum-based sensing applications.
View details for DOI 10.1021/acsmaterialsau.1c00027
View details for PubMedID 36855764
View details for PubMedCentralID PMC9888652
-
Mechanical Stimulation after Centrifuge-Free Nano-Electroporative Transfection Is Efficient and Maintains Long-Term T Cell Functionalities.
Small (Weinheim an der Bergstrasse, Germany)
2021: e2103198
Abstract
Transfection is an essential step in genetic engineering and cell therapies. While a number of non-viral micro- and nano-technologies have been developed to deliver DNA plasmids into the cell cytoplasm, one of the most challenging and least efficient steps is DNA transport to and expression in the nucleus. Here, the magnetic nano-electro-injection (MagNEI) platform is described which makes use of oscillatory mechanical stimulation after cytoplasmic delivery with high aspect-ratio nano-structures to achieve stable (>2 weeks) net transfection efficiency (efficiency*viability) of 50% in primary human T cells. This is, to the best of the authors' knowledge, the highest net efficiency reported for primary T cells using a centrifuge-free, non-viral transfection method, in the absence of cell selection, and with a clinically relevant cargo size (>12kbp). Wireless mechanical stimulation downregulates the expression of microtubule motor protein gene, KIF2A, which increases local DNA concentration near the nuclei, resulting in enhanced DNA transfection. Magnetic forces also accelerate membrane repair by promoting actin cytoskeletal remodeling which preserves key biological attributes including cell proliferation and gene expressions. These results demonstrate MagNEI as a powerful non-viral transfection technique for progress toward fully closed, end-to-end T cell manufacturing with less human labor, lower production cost, and shorter delay.
View details for DOI 10.1002/smll.202103198
View details for PubMedID 34396686
-
Quantum Photonic Interface for Tin-Vacancy Centers in Diamond
PHYSICAL REVIEW X
2021; 11 (3)
View details for DOI 10.1103/PhysRevX.11.031021
View details for Web of Science ID 000679149200001
-
Narrow-linewidth tin-vacancy centers in diamond waveguides
IEEE. 2021
View details for Web of Science ID 000831479801105
-
Narrow-Linewidth Tin-Vacancy Centers in a Diamond Waveguide
ACS PHOTONICS
2020; 7 (9): 2356–61
View details for DOI 10.1021/acsphotonics.0c00833
View details for Web of Science ID 000573377300006
-
Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth.
Nano letters
2020
Abstract
Group IV color centers in diamond have garnered great interest for their potential as optically active solid-state spin qubits. The future utilization of such emitters requires the development of precise site-controlled emitter generation techniques that are compatible with high-quality nanophotonic devices. This task is more challenging for color centers with large group IV impurity atoms, which are otherwise promising because of their predicted long spin coherence times without a dilution refrigerator. For example, when applied to the negatively charged tin-vacancy (SnV-) center, conventional site-controlled color center generation methods either damage the diamond surface or yield bulk spectra with unexplained features. Here we demonstrate a novel method to generate site-controlled SnV- centers with clean bulk spectra. We shallowly implant Sn ions through a thin implantation mask and subsequently grow a layer of diamond via chemical vapor deposition. This method can be extended to other color centers and integrated with quantum nanophotonic device fabrication.
View details for DOI 10.1021/acs.nanolett.9b04495
View details for PubMedID 32031821
-
Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface.
Nature nanotechnology
2020
Abstract
To date, effective control over the electrochemical reduction of CO2 to multicarbon products (C≥2) has been very challenging. Here, we report a design principle for the creation of a selective yet robust catalytic interface for heterogeneous electrocatalysts in the reduction of CO2 to C2 oxygenates, demonstrated by rational tuning of an assembly of nitrogen-doped nanodiamonds and copper nanoparticles. The catalyst exhibits a Faradaic efficiency of ~63% towards C2 oxygenates at applied potentials of only -0.5V versus reversible hydrogen electrode. Moreover, this catalyst shows an unprecedented persistent catalytic performance up to 120h, with steady current and only 19% activity decay. Density functional theory calculations show that CO binding is strengthened at the copper/nanodiamond interface, suppressing CO desorption and promoting C2 production by lowering the apparent barrier for CO dimerization. The inherent compositional and electronic tunability of the catalyst assembly offers an unrivalled degree of control over the catalytic interface, and thereby the reaction energetics and kinetics.
View details for DOI 10.1038/s41565-019-0603-y
View details for PubMedID 31907442
-
Massively parallel microwire arrays integrated with CMOS chips for neural recording.
Science advances
2020; 6 (12): eaay2789
Abstract
Multi-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces. The system consists of a bundle of microwires mated to large-scale microelectrode arrays, such as camera chips. This system has excellent recording performance, demonstrated via single unit and local-field potential recordings in isolated retina and in the motor cortex or striatum of awake moving mice. The modular design enables a variety of microwire types and sizes to be integrated with different types of pixel arrays, connecting the rapid progress of commercial multiplexing, digitisation and data acquisition hardware together with a three-dimensional neural interface.
View details for DOI 10.1126/sciadv.aay2789
View details for PubMedID 32219158
View details for PubMedCentralID PMC7083623
-
Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth
Nano Letters
2020; 20 (3): 1614-1619
View details for DOI 10.1021/acs.nanolett.9b04495
-
CHIME: CMOS-Hosted in vivo Microelectrodes for Massively Scalable Neuronal Recordings.
Frontiers in neuroscience
2020; 14: 834
Abstract
Mammalian brains consist of 10s of millions to 100s of billions of neurons operating at millisecond time scales, of which current recording techniques only capture a tiny fraction. Recording techniques capable of sampling neural activity at high spatiotemporal resolution have been difficult to scale. The most intensively studied mammalian neuronal networks, such as the neocortex, show a layered architecture, where the optimal recording technology samples densely over large areas. However, the need for application-specific designs as well as the mismatch between the three-dimensional architecture of the brain and largely two-dimensional microfabrication techniques profoundly limits both neurophysiological research and neural prosthetics. Here, we discuss a novel strategy for scalable neuronal recording by combining bundles of glass-ensheathed microwires with large-scale amplifier arrays derived from high-density CMOS in vitro MEA systems or high-speed infrared cameras. High signal-to-noise ratio (<25 muV RMS noise floor, SNR up to 25) is achieved due to the high conductivity of core metals in glass-ensheathed microwires allowing for ultrathin metal cores (down to <1 mum) and negligible stray capacitance. Multi-step electrochemical modification of the tip enables ultra-low access impedance with minimal geometric area, which is largely independent of the core diameter. We show that the microwire size can be reduced to virtually eliminate damage to the blood-brain-barrier upon insertion and we demonstrate that microwire arrays can stably record single-unit activity. Combining microwire bundles and CMOS arrays allows for a highly scalable neuronal recording approach, linking the progress in electrical neuronal recordings to the rapid progress in silicon microfabrication. The modular design of the system allows for custom arrangement of recording sites. Our approach of employing bundles of minimally invasive, highly insulated and functionalized microwires to extend a two-dimensional CMOS architecture into the 3rd dimension can be translated to other CMOS arrays, such as electrical stimulation devices.
View details for DOI 10.3389/fnins.2020.00834
View details for PubMedID 32848584
-
Site-controlled generation of tin-vacancy centers in diamond via shallow ion implantation and diamond overgrowth
IEEE. 2020
View details for Web of Science ID 000612090000055
-
Transfection with Nanostructure Electro-Injection is Minimally Perturbative
ADVANCED THERAPEUTICS
2019; 2 (12)
View details for DOI 10.1002/adtp.201900133
View details for Web of Science ID 000576706700005
-
Transfection with nanostructure electro-injection is minimally perturbative.
Advanced therapeutics
2019; 2 (12)
Abstract
Transfection is a critical step for gene editing and cell-based therapies. Nanoscale technologies have shown great promise to provide higher transfection efficiency and lower cell perturbation than conventional viral, biochemical and electroporation techniques due to their small size and localized effect. Although this has significant implications for using cells post-transfection, it has not been thoroughly studied. Here, we developed the nano-electro-injection (NEI) platform which makes use of localized electric fields to transiently open pores on cell membrane followed by electrophoretic delivery of DNA into cells. NEI provided two-folds higher net transfection efficiency than biochemicals and electroporation in Jurkat cells. Analysis of cell doubling time, intracellular calcium levels and mRNA expression changes after these gene delivery methods revealed that viruses and electroporation adversely affected cell behavior. Cell doubling times increased by more than 40% using virus and electroporation methods indicative of higher levels of cell stress, unlike NEI which only minimally affected cell division. Finally, electroporation, but not NEI, greatly altered the expression of immune-associated genes related to immune cell activation and trafficking. These results highlight that nanoscale delivery tools can have significant advantages from a cell health perspective for cell-based research and therapeutic applications.
View details for DOI 10.1002/adtp.201900133
View details for PubMedID 37448511
View details for PubMedCentralID PMC10343936
-
Impact of Rigidity on Molecular Self-Assembly.
Langmuir : the ACS journal of surfaces and colloids
2019
Abstract
Rigid, cage-like molecules, like diamondoids, show unique self-assembly behavior, such as templating 1-D nanomaterial assembly via pathways that are typically blocked for such bulky substituents. We investigate molecular forces between diamondoids to explore why molecules with high structural rigidity exhibit these novel assembly pathways. The rigid nature of diamondoids significantly lowers configurational entropy, and we hypothesize that this influences molecular interaction forces. To test this concept, we calculated the distance-dependent impact of entropy on assembly using molecular dynamics simulations. To isolate pairwise entropic and enthalpic contributions to assembly, we considered pairs of molecules in a thermal bath, fixed at set intermolecular separations but otherwise allowed to freely move. By comparing diamondoids to linear alkanes, we draw out the impact of rigidity on the entropy and enthalpy of pairwise interactions. We find that linear alkanes actually exhibit stronger van der Waals interactions than diamondoids at contact, because the bulky structure of diamondoids induces larger net atomic separations. Yet, we also find that diamondoids pay lower entropic penalties when assembling into contact pairs. Thus, the cage-like shape of diamondoids introduces an enthalpic penalty at contact, but the penalty is counterbalanced by entropic effects. Investigating the distance dependence of entropic forces provides a mechanism to explore how rigidity influences molecular assembly. Our results show that low entropic penalties paid by diamondoids can explain the effectiveness of diamondoids in templating nanomaterial assembly. Hence, tuning molecular rigidity can be an effective strategy for controlling the assembly of functional materials, such as biomimetic surfaces and nanoscale materials.
View details for DOI 10.1021/acs.langmuir.9b01824
View details for PubMedID 31610658
-
Surface Photovoltage-Induced Ultralow Work Function Material for Thermionic Energy Converters
ACS ENERGY LETTERS
2019; 4 (10): 2436–43
Abstract
Low work function materials are essential for efficient thermionic energy converters (TECs), electronics, and electron emission devices. Much effort has been put into finding thermally stable material combinations that exhibit low work functions. Submonolayer coatings of alkali metals have proven to significantly reduce the work function; however, a work function less than 1 eV has not been reached. We report a record-low work function of 0.70 eV by inducing a surface photovoltage (SPV) in an n-type semiconductor with an alkali metal coating. Ultraviolet photoelectron spectroscopy indicates a work function of 1.06 eV for cesium/oxygen-activated GaAs consistent with density functional theory model predictions. By illuminating with a 532 nm laser we induce an additional shift down to 0.70 eV due to the SPV. Further, we apply the SPV to the collector of an experimental TEC and demonstrate an I-V curve shift consistent with the collector work function reduction. This method opens an avenue toward efficient TECs and next-generation electron emission devices.
View details for DOI 10.1021/acsenergylett.9b01214
View details for Web of Science ID 000490365500011
View details for PubMedID 31633034
View details for PubMedCentralID PMC6792473
-
Nanodiamond Integration with Photonic Devices
LASER & PHOTONICS REVIEWS
2019
View details for DOI 10.1002/lpor.201800316
View details for Web of Science ID 000480009200001
-
Micron-gap spacers with ultrahigh thermal resistance and mechanical robustness for direct energy conversion.
Microsystems & nanoengineering
2019; 5: 31
Abstract
In thermionic energy converters, the absolute efficiency can be increased up to 40% if space-charge losses are eliminated by using a sub-10-µm gap between the electrodes. One practical way to achieve such small gaps over large device areas is to use a stiff and thermally insulating spacer between the two electrodes. We report on the design, fabrication and characterization of thin-film alumina-based spacers that provided robust 3-8 μm gaps between planar substrates and had effective thermal conductivities less than those of aerogels. The spacers were fabricated on silicon molds and, after release, could be manually transferred onto any substrate. In large-scale compression testing, they sustained compressive stresses of 0.4-4 MPa without fracture. Experimentally, the thermal conductance was 10-30 mWcm-2K-1 and, surprisingly, independent of film thickness (100-800 nm) and spacer height. To explain this independence, we developed a model that includes the pressure-dependent conductance of locally distributed asperities and sparse contact points throughout the spacer structure, indicating that only 0.1-0.5% of the spacer-electrode interface was conducting heat. Our spacers show remarkable functionality over multiple length scales, providing insulating micrometer gaps over centimeter areas using nanoscale films. These innovations can be applied to other technologies requiring high thermal resistance in small spaces, such as thermophotovoltaic converters, insulation for spacecraft and cryogenic devices.
View details for DOI 10.1038/s41378-019-0071-4
View details for PubMedID 31636923
View details for PubMedCentralID PMC6799816
-
Micron-gap spacers with ultrahigh thermal resistance and mechanical robustness for direct energy conversion
MICROSYSTEMS & NANOENGINEERING
2019; 5
View details for DOI 10.1038/s41378-019-0071-4
View details for Web of Science ID 000477598700001
-
Sparking to life.
Nature materials
2019
View details for DOI 10.1038/s41563-019-0510-5
View details for PubMedID 31562493
-
Nanostructured Materials for Intracellular Cargo Delivery.
Accounts of chemical research
2019
Abstract
Intracellular cargo delivery is an essential step in many biomedical applications including gene editing and biologics therapy. Examples of cargo include nucleic acids (RNA and DNA), proteins, small biomolecules, and drugs, which can vary substantially in terms of their sizes, charges, solubility, and stability. Viruses have been used traditionally to deliver nucleic acids into cells, but the method suffers from limitations such as small cargo size, safety concerns, and viral genome integration into host cells, all of which complicate therapeutic applications. Commercially available techniques using biochemicals and bulk electroporation are, in general, poorly compatible with primary cells such as human induced pluripotent stem cells and immune cells, which are increasingly important candidates for adoptive cell therapy. Nanostructures, with dimensions ranging from tens of nanometers to a few micrometers, may play a critical role in overcoming cellular manipulation and delivery challenges and provide a powerful alternative to conventional techniques. A critical feature that differentiates nanostructures from viral, biochemical, and bulk electroporation techniques is that they interface with cells at a scale measuring ten to hundreds of nanometers in size. This highly local interaction enables application of stronger and more direct stimuli such as mechanical force, heat, or electric fields than would be possible in a bulk treatment. Compared to popular viral, biochemical, and bulk electroporation methods, nanostructures were found to minimally perturb cells with cells remaining in good health during postdelivery culture. These advantages have enabled nanostructures such as nanowires and nanotubes to successfully interface with a wide variety of cells, including primary immune cells and cardiomyocytes, for in vitro and in vivo applications. This Account is focused on using nanostructures for cargo delivery into biological cells. In this Account, we will first outline the historical developments using nanostructures for interfacing with cells. We will highlight how mechanistic understanding of nano-bio interactions has evolved over the last decade and how this improved knowledge has motivated coupling of electric and magnetic fields to nanostructures to improve delivery outcomes. There will also be an in-depth discussion on the merits of nanostructures in comparison to conventional methods using viruses, biochemicals, and bulk electroporation. Finally, motivated by our observations on the lack of consistency in reporting key metrics such as efficiency in literature, we suggest a set of metrics for documenting experimental results with the aim to promote standardization in reporting and ease in comparing. We suggest the use of more sophisticated tools such as RNA transcriptomics for thorough assessment of cell perturbation attributed to intracellular delivery. We hope that this Account can effectively capture the progress of nanostructure-mediated cargo delivery and encourage new innovations.
View details for DOI 10.1021/acs.accounts.9b00272
View details for PubMedID 31465200
-
Frequency Tunable Single-Photon Emission From a Single Atomic Defect in a Solid
IEEE. 2019
View details for Web of Science ID 000482226303114
-
Cavity-Enhanced Raman Emission from a Single Color Center in a Solid.
Physical review letters
2018; 121 (8): 083601
Abstract
We demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures. We also show that the cavity selectively suppresses the phonon-induced spontaneous emission that degrades the efficiency of Raman photon generation. Our results pave the way towards photon-mediated many-body interactions between solid-state quantum emitters in a nanophotonic platform.
View details for PubMedID 30192607
-
An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes
JOULE
2018; 2 (8): 1595–1609
View details for DOI 10.1016/j.joule.2018.05.007
View details for Web of Science ID 000441627400022
-
Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features.
Proceedings of the National Academy of Sciences of the United States of America
2018
Abstract
Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.
View details for PubMedID 30068609
-
Electronic and Ionic Materials for Neurointerfaces
ADVANCED FUNCTIONAL MATERIALS
2018; 28 (12)
View details for DOI 10.1002/adfm.201704335
View details for Web of Science ID 000428347700021
-
Sterically controlled mechanochemistry under hydrostatic pressure
NATURE
2018; 554 (7693): 505-+
Abstract
Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. However, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistry through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain. We engineer molecules with mechanically heterogeneous components-a compressible ('soft') mechanophore and incompressible ('hard') ligands. In these 'molecular anvils', isotropic stress leads to relative motions of the rigid ligands, anisotropically deforming the compressible mechanophore and activating bonds. Conversely, rigid ligands in steric contact impede relative motion, blocking reactivity. We combine experiments and computations to demonstrate hydrostatic-pressure-driven redox reactions in metal-organic chalcogenides that incorporate molecular elements that have heterogeneous compressibility, in which bending of bond angles or shearing of adjacent chains activates the metal-chalcogen bonds, leading to the formation of the elemental metal. These results reveal an unexplored reaction mechanism and suggest possible strategies for high-specificity mechanosynthesis.
View details for PubMedID 29469090
-
Monochromatic Photocathodes from Graphene-Stabilized Diamondoids
NANO LETTERS
2018; 18 (2): 1099–1103
Abstract
The monochromatic photoemission from diamondoid monolayers provides a new strategy to create electron sources with low energy dispersion and enables compact electron guns with high brightness and low beam emittance for aberration-free imaging, lithography, and accelerators. However, these potential applications are hindered by degradation of diamondoid monolayers under photon irradiation and electron bombardment. Here, we report a graphene-protected diamondoid monolayer photocathode with 4-fold enhancement of stability compared to the bare diamondoid counterpart. The single-layer graphene overcoating preserves the monochromaticity of the photoelectrons, showing 12.5 meV ful width at half-maximum distribution of kinetic energy. Importantly, the graphene coating effectively suppresses desorption of the diamondoid monolayer, enhancing its thermal stability by at least 100 K. Furthermore, by comparing the decay rate at different photon energies, we identify electron bombardment as the principle decay pathway for diamondoids under graphene protection. This provides a generic approach for stabilizing volatile species on photocathode surfaces, which could greatly improve performance of electron emitters.
View details for PubMedID 29286670
-
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
NANO LETTERS
2018; 18 (2): 1360–65
Abstract
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into the cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. We also demonstrate the largest coupling strength (g/2π = 4.9 ± 0.3 GHz) and cooperativity (C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.
View details for DOI 10.1021/acs.nanolett.7b05075
View details for Web of Science ID 000425559700102
View details for PubMedID 29377701
-
Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration
SCIENTIFIC REPORTS
2018; 8: 728
Abstract
Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.
View details for PubMedID 29335424
-
Roadmap on semiconductor-cell biointerfaces.
Physical biology
2018; 15 (3): 031002
Abstract
This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.
View details for DOI 10.1088/1478-3975/aa9f34
View details for PubMedID 29205173
-
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2
IMMUNITY
2017; 47 (6): 1051-+
Abstract
Human in vitro generated monocyte-derived dendritic cells (moDCs) and macrophages are used clinically, e.g., to induce immunity against cancer. However, their physiological counterparts, ontogeny, transcriptional regulation, and heterogeneity remains largely unknown, hampering their clinical use. High-dimensional techniques were used to elucidate transcriptional, phenotypic, and functional differences between human in vivo and in vitro generated mononuclear phagocytes to facilitate their full potential in the clinic. We demonstrate that monocytes differentiated by macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF) resembled in vivo inflammatory macrophages, while moDCs resembled in vivo inflammatory DCs. Moreover, differentiated monocytes presented with profound transcriptomic, phenotypic, and functional differences. Monocytes integrated GM-CSF and IL-4 stimulation combinatorically and temporally, resulting in a mode- and time-dependent differentiation relying on NCOR2. Finally, moDCs are phenotypically heterogeneous and therefore necessitate the use of high-dimensional phenotyping to open new possibilities for better clinical tailoring of these cellular therapies.
View details for PubMedID 29262348
View details for PubMedCentralID PMC5772172
-
Self-Assembly of Mesoscale Artificial Clathrin Mimics
ACS NANO
2017; 11 (10): 9889–97
Abstract
Fluidic control and sampling in complex environments is an important process in biotechnology, materials synthesis, and microfluidics. An elegant solution to this problem has evolved in nature through cellular endocytosis, where the dynamic recruitment, self-assembly, and spherical budding of clathrin proteins allows cells to sample their external environment. Yet despite the importance and utility of endocytosis, artificial systems which can replicate this dynamic behavior have not been developed. Guided by clathrin's unusual structure, we created simplified metallic microparticles that capture the three-legged shape, particle curvature, and interfacial attachment characteristics of clathrin. These artificial clathrin mimics successfully recreate biomimetic analogues of clathrin's recruitment, assembly, and budding, ultimately forming extended networks at fluid interfaces and invaginating immiscible phases into spheres under external fields. Particle curvature was discovered to be a critical structural motif, greatly limiting irreversible aggregation and inducing the legs' selective tip-to-tip attraction. This architecture provides a template for a class of active self-assembly units to drive structural and dimensional transformations of liquid-liquid interfaces and microscale fluidic sampling.
View details for PubMedID 28921943
-
Quantifying and Elucidating Thermally Enhanced Minority Carrier Diffusion Length Using Radius-Controlled Rutile Nanowires
NANO LETTERS
2017; 17 (9): 5264–72
Abstract
The minority carrier diffusion length (LD) is a crucial property that determines the performance of light absorbers in photoelectrochemical (PEC) cells. Many transition-metal oxides are stable photoanodes for solar water splitting but exhibit a small to moderate LD, ranging from a few nanometers (such as α-Fe2O3 and TiO2) to a few tens of nanometers (such as BiVO4). Under operating conditions, the temperature of PEC cells can deviate substantially from ambient, yet the temperature dependence of LD has not been quantified. In this work, we show that measuring the photocurrent as a function of both temperature and absorber dimensions provides a quantitative method for evaluating the temperature-dependent minority carrier transport. By measuring photocurrents of nonstoichiometric rutile TiO2-x nanowires as a function of wire radius (19-75 nm) and temperature (10-70 °C), we extract the minority carrier diffusion length along with its activation energy. The minority carrier diffusion length in TiO2-x increases from 5 nm at 25 °C to 10 nm at 70 °C, implying that enhanced carrier mobility outweighs the increase in the recombination rate with temperature. Additionally, by comparing the temperature-dependent photocurrent in BiVO4, TiO2, and α-Fe2O3, we conclude that the ratio of the minority carrier diffusion length to the depletion layer width determines the extent of temperature enhancement, and reconcile the widespread temperature coefficients, which ranged from 0.6 to 1.7% K-1. This insight provides a general design rule to select light absorbers for large thermally activated photocurrents and to predict PEC cell characteristics at a range of temperatures encountered during realistic device operation.
View details for PubMedID 28817772
-
Electron-emission materials: Advances, applications, and models
MRS BULLETIN
2017; 42 (7): 488–92
View details for DOI 10.1557/mrs.2017.142
View details for Web of Science ID 000405092800008
-
Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2017; 114 (10): E1866–E1874
View details for DOI 10.1073/pnas.1615375114/-/DCSupplemental
View details for Web of Science ID 000395511400013
-
Temperature-dependent optical properties of titanium nitride
APPLIED PHYSICS LETTERS
2017; 110 (10)
View details for DOI 10.1063/1.4977840
View details for Web of Science ID 000397871800011
-
Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly.
Nature materials
2017; 16 (3): 349-355
Abstract
Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal-organic frameworks and coordination polymers. However, the lack of 'solid' inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal-organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. This discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal-organic framework linkers.
View details for DOI 10.1038/nmat4823
View details for PubMedID 28024157
-
Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring.
Proceedings of the National Academy of Sciences of the United States of America
2017
Abstract
Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation.
View details for DOI 10.1073/pnas.1615375114
View details for PubMedID 28223521
-
Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth.
Nano letters
2017
Abstract
Color center-containing nanodiamonds have many applications in quantum technologies and biology. Diamondoids, molecular-sized diamonds have been used as seeds in chemical vapor deposition (CVD) growth. However, optimizing growth conditions to produce high crystal quality nanodiamonds with color centers requires varying growth conditions that often leads to ad-hoc and time-consuming, one-at-a-time testing of reaction conditions. In order to rapidly explore parameter space, we developed a microwave plasma CVD technique using a vertical, rather than horizontally oriented stage-substrate geometry. With this configuration, temperature, plasma density, and atomic hydrogen density vary continuously along the vertical axis of the substrate. This variation allowed rapid identification of growth parameters that yield single crystal diamonds down to 10 nm in size and 75 nm diameter optically active center silicon-vacancy (Si-V) nanoparticles. Furthermore, this method may provide a means of incorporating a wide variety of dopants in nanodiamonds without ion irradiation damage.
View details for DOI 10.1021/acs.nanolett.6b04543
View details for PubMedID 28182433
-
Back-gated graphene anode for more efficient thermionic energy converters
NANO ENERGY
2017; 32: 67-72
View details for DOI 10.1016/j.nanoen.2016.12.027
View details for Web of Science ID 000397003700009
-
Direct Intracellular Delivery of Cell Impermeable Probes of Protein Glycosylation Using Nanostraws.
Chembiochem
2017
Abstract
Bioorthogonal chemistry is an effective tool for elucidating metabolic pathways and measuring cellular activity, yet its use is currently limited by the difficulty of getting probes past the cell membrane and into the cytoplasm, especially if more complex probes are desired. Here we present a simple and minimally perturbative technique to deliver functional probes of glycosylation into cells by using a nanostructured "nanostraw" delivery system. Nanostraws provide direct intracellular access to cells through fluid conduits that remain small enough to minimize cell perturbation. First, we demonstrate that our platform can deliver an unmodified azidosugar, N-azidoacetylmannosamine, into cells with similar effectiveness to a chemical modification strategy (peracetylation). We then show that the nanostraw platform enables direct delivery of an azidosugar modified with a charged uridine diphosphate group (UDP) that prevents intracellular penetration, thereby bypassing multiple enzymatic processing steps. By effectively removing the requirement for cell permeability from the probe, the nanostraws expand the toolbox of bioorthogonal probes that can be used to study biological processes on a single, easy-to-use platform.
View details for DOI 10.1002/cbic.201600689
View details for PubMedID 28130882
-
Complete Coherent Control of Silicon-Vacancies in Diamond Nanopillars Containing Single Defect Centers
IEEE. 2017
View details for Web of Science ID 000427296200411
-
Complete coherent control of silicon vacancies in diamond nanopillars containing single defect centers
OPTICA
2017; 4 (11): 1317-1321
View details for DOI 10.1364/OPTICA.4.001317
-
Electronic devices: Nanoparticles make salty circuits.
Nature nanotechnology
2016; 11 (7): 579-580
View details for DOI 10.1038/nnano.2016.46
View details for PubMedID 26974955
-
Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery
ACS NANO
2016; 10 (6): 5873-5881
Abstract
The oral route is preferred for systemic drug administration and provides direct access to diseased tissue of the gastrointestinal (GI) tract. However, many drugs have poor absorption upon oral administration due to damaging enzymatic and pH conditions, mucus and cellular permeation barriers, and limited time for drug dissolution. To overcome these limitations and enhance oral drug absorption, micron-scale devices with planar, asymmetric geometries, termed microdevices, have been designed to adhere to the lining of the GI tract and release drug at high concentrations directly toward GI epithelium. Here we seal microdevices with nanostraw membranes-porous nanostructured biomolecule delivery substrates-to enhance the properties of these devices. We demonstrate that the nanostraws facilitate facile drug loading and tunable drug release, limit the influx of external molecules into the sealed drug reservoir, and increase the adhesion of devices to epithelial tissue. These findings highlight the potential of nanostraw microdevices to enhance the oral absorption of a wide range of therapeutics by binding to the lining of the GI tract, providing prolonged and proximal drug release, and reducing the exposure of their payload to drug-degrading biomolecules.
View details for DOI 10.1021/acsnano.6b00809
View details for Web of Science ID 000378973700030
View details for PubMedID 27268699
-
Ultralow effective work function surfaces using diamondoid monolayers.
Nature nanotechnology
2016; 11 (3): 267-272
Abstract
Electron emission is critical for a host of modern fabrication and analysis applications including mass spectrometry, electron imaging and nanopatterning. Here, we report that monolayers of diamondoids effectively confer dramatically enhanced field emission properties to metal surfaces. We attribute the improved emission to a significant reduction of the work function rather than a geometric enhancement. This effect depends on the particular diamondoid isomer, with [121]tetramantane-2-thiol reducing gold's work function from ∼5.1 eV to 1.60 ± 0.3 eV, corresponding to an increase in current by a factor of over 13,000. This reduction in work function is the largest reported for any organic species and also the largest for any air-stable compound. This effect was not observed for sp(3)-hybridized alkanes, nor for smaller diamondoid molecules. The magnitude of the enhancement, molecule specificity and elimination of gold metal rearrangement precludes geometric factors as the dominant contribution. Instead, we attribute this effect to the stable radical cation of diamondoids. Our computed enhancement due to a positively charged radical cation was in agreement with the measured work functions to within ±0.3 eV, suggesting a new paradigm for low-work-function coatings based on the design of nanoparticles with stable radical cations.
View details for DOI 10.1038/nnano.2015.277
View details for PubMedID 26641529
-
Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers.
Nano letters
2016; 16 (1): 212-7
Abstract
We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV(-)) color centers in diamond as quantum emitters. Hybrid diamond-SiC structures are realized by combining the growth of nano- and microdiamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV(-) color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ion-implantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV(-) on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV(-) centers. Scanning confocal photoluminescence measurements reveal optically active SiV(-) lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow line widths and small inhomogeneous broadening of SiV(-) lines from all-diamond nanopillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV(-) centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.
View details for DOI 10.1021/acs.nanolett.5b03515
View details for PubMedID 26695059
-
Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers
NANO LETTERS
2016; 16 (1): 212-217
Abstract
We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV(-)) color centers in diamond as quantum emitters. Hybrid diamond-SiC structures are realized by combining the growth of nano- and microdiamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV(-) color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ion-implantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV(-) on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV(-) centers. Scanning confocal photoluminescence measurements reveal optically active SiV(-) lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow line widths and small inhomogeneous broadening of SiV(-) lines from all-diamond nanopillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV(-) centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.
View details for DOI 10.1021/acs.nanolett.5b03515
View details for Web of Science ID 000368322700034
-
Low Strain Silicon-Vacancy Color Centers in Diamond Nanopillar Arrays
IEEE. 2016
View details for Web of Science ID 000391286402321
-
Emitter-Cavity Coupling in Hybrid Silicon Carbide-Nanodiamond Microdisk Resonators
IEEE. 2016
View details for Web of Science ID 000391286402328
-
Temporally resolved direct delivery of second messengers into cells using nanostraws
LAB ON A CHIP
2016; 16 (13): 2434-2439
Abstract
Second messengers are biomolecules with the critical role of conveying information to intracellular targets. They are typically membrane-impermeable and only enter cells through tightly regulated transporters. Current methods for manipulating second messengers in cells require preparation of modified cell lines or significant disruptions in cell function, especially at the cell membrane. Here we demonstrate that 100 nm diameter 'nanostraws' penetrate the cell membrane to directly modulate second messenger concentrations within cells. Nanostraws are hollow vertical nanowires that provide a fluidic conduit into cells to allow time-resolved delivery of the signaling ion Ca(2+) without chemical permeabilization or genetic modification, minimizing cell perturbation. By integrating the nanostraw platform into a microfluidic device, we demonstrate coordinated delivery of Ca(2+) ions into hundreds of cells at the time scale of several seconds with the ability to deliver complex signal patterns, such as oscillations over time. The diffusive nature of nanostraw delivery gives the platform unique versatility, opening the possibility for time-resolved delivery of any freely diffusing molecules.
View details for DOI 10.1039/c6lc00463f
View details for Web of Science ID 000378941700008
View details for PubMedID 27292263
-
Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length
ENERGY & ENVIRONMENTAL SCIENCE
2016; 9 (6): 2044-2052
View details for DOI 10.1039/c6ee00036c
View details for Web of Science ID 000378244200013
-
Determining the Time Window for Dynamic Nanowire Cell Penetration Processes
ACS NANO
2015; 9 (12): 11667-11677
Abstract
Nanowire (NW) arrays offer opportunities for parallel, nondestructive intracellular access for biomolecule delivery, intracellular recording, and sensing. Spontaneous cell membrane penetration by vertical nanowires is essential for these applications, yet the time- and geometry-dependent penetration process is still poorly understood. In this work, the dynamic NW-cell interface during cell spreading was examined through experimental cell penetration measurements combined with two mechanical models based on substrate adhesion force or cell traction forces. Penetration was determined by comparing the induced tension at a series of given membrane configurations to the critical membrane failure tension. The adhesion model predicts that penetration occurs within a finite window shortly after initial cell contact and adhesion, while the traction model predicts increasing penetration over a longer period. NW penetration rates determined from a cobalt ion delivery assay are compared to the predicted results from the two models. In addition, the effects of NW geometry and cell properties are systematically evaluated to identify the key factors for penetration.
View details for DOI 10.1021/acsnano.5b05498
View details for Web of Science ID 000367280100016
-
Engineering Ultra-Low Work Function of Graphene
NANO LETTERS
2015; 15 (10): 6475-6480
Abstract
Low work function materials are critical for energy conversion and electron emission applications. Here, we demonstrate for the first time that an ultralow work function graphene is achieved by combining electrostatic gating with a Cs/O surface coating. A simple device is built from large-area monolayer graphene grown by chemical vapor deposition, transferred onto 20 nm HfO2 on Si, enabling high electric fields capacitive charge accumulation in the graphene. We first observed over 0.7 eV work function change due to electrostatic gating as measured by scanning Kelvin probe force microscopy and confirmed by conductivity measurements. The deposition of Cs/O further reduced the work function, as measured by photoemission in an ultrahigh vacuum environment, which reaches nearly 1 eV, the lowest reported to date for a conductive, nondiamond material.
View details for DOI 10.1021/acs.nanolett.5b01916
View details for PubMedID 26401728
-
Fabrication of sub-cell size "spiky" nanoparticles and their interfaces with biological cells.
Journal of materials chemistry. B
2015; 3 (26): 5155-5160
Abstract
Chip-based arrays of vertical nanowires (NWs) have attracted biomedical research interest for their one dimensional architecture and cell-interface properties, yet delivery of these devices in solution is not possible due to the inherent attachment of NWs to a planar substrate. To overcome this structural limitation, we report synthesis of hierarchical nanoparticles covered with stiff NWs, namely "spiky particles" which combine the advantages of supported vertical nanowires and aqueous delivery of suspended nanoparticles. ZnO NWs were grown onto SiO2 nanoparticles using a solution-based synthesis to avoid dispersing particles grown on solid substrates, and increase the particle quantity. These spiky particles can be fabricated with tunable particle and nanowire dimensions. The cell membrane interface with these hierarchical nanostructures were examined using scanning electron microscopy to determine the extent of engulfment and interaction.
View details for DOI 10.1039/c5tb00452g
View details for PubMedID 32262589
-
Nanotechnology and neurophysiology
CURRENT OPINION IN NEUROBIOLOGY
2015; 32: 132-140
Abstract
Neuroscience would be revolutionized by a technique to measure intracellular electrical potentials that would not disrupt cellular physiology and could be massively parallelized. Though such a technology does not yet exist, the technical hurdles for fabricating minimally disruptive, solid-state electrical probes have arguably been overcome in the field of nanotechnology. Nanoscale devices can be patterned with features on the same length scale as biological components, and several groups have demonstrated that nanoscale electrical probes can measure the transmembrane potential of electrogenic cells. Developing these nascent technologies into robust intracellular recording tools will now require a better understanding of device-cell interactions, especially the membrane-inorganic interface. Here we review the state-of-the art in nanobioelectronics, emphasizing the characterization and design of stable interfaces between nanoscale devices and cells.
View details for DOI 10.1016/j.conb.2015.03.014
View details for Web of Science ID 000356198900018
-
Nanotechnology and neurophysiology.
Current opinion in neurobiology
2015; 32: 132-140
Abstract
Neuroscience would be revolutionized by a technique to measure intracellular electrical potentials that would not disrupt cellular physiology and could be massively parallelized. Though such a technology does not yet exist, the technical hurdles for fabricating minimally disruptive, solid-state electrical probes have arguably been overcome in the field of nanotechnology. Nanoscale devices can be patterned with features on the same length scale as biological components, and several groups have demonstrated that nanoscale electrical probes can measure the transmembrane potential of electrogenic cells. Developing these nascent technologies into robust intracellular recording tools will now require a better understanding of device-cell interactions, especially the membrane-inorganic interface. Here we review the state-of-the art in nanobioelectronics, emphasizing the characterization and design of stable interfaces between nanoscale devices and cells.
View details for DOI 10.1016/j.conb.2015.03.014
View details for PubMedID 25889532
-
Nanostraws: A Nanofabricated Platform for Delivery of Cell-Impermeable, Synthetic Biomolecules
CELL PRESS. 2015: 149A
View details for DOI 10.1016/j.bpj.2014.11.823
View details for Web of Science ID 000359471700744
-
Bioorthogonal Calcium Modulation by Direct Intracellular Access using Nanostraws
CELL PRESS. 2015: 568A
View details for DOI 10.1016/j.bpj.2014.11.3109
View details for Web of Science ID 000362849600484
-
Membrane indentation triggers clathrin lattice reorganization and fluidization
SOFT MATTER
2015; 11 (3): 439-448
Abstract
Clathrin-mediated endocytosis involves the coordinated assembly of clathrin cages around membrane indentations, necessitating fluid-like reorganization followed by solid-like stabilization. This apparent duality in clathrin's in vivo behavior provides some indication that the physical interactions between clathrin triskelia and the membrane effect a local response that triggers fluid-solid transformations within the clathrin lattice. We develop a computational model to study the response of clathrin protein lattices to spherical deformations of the underlying flexible membrane. These deformations are similar to the shapes assumed during intracellular trafficking of nanoparticles. Through Monte Carlo simulations of clathrin-on-membrane systems, we observe that these membrane indentations give rise to a greater than normal defect density within the overlaid clathrin lattice. In many cases, the bulk surrounding lattice remains in a crystalline phase, and the extra defects are localized to the regions of large curvature. This can be explained by the fact that the in-plane elastic stress in the clathrin lattice are reduced by coupling defects to highly curved regions. The presence of defects brought about by indentation can result in the fluidization of a lattice that would otherwise be crystalline, resulting in an indentation-driven, defect-mediated phase transition. Altering subunit elasticity or membrane properties is shown to drive a similar transition, and we present phase diagrams that map out the combined effects of these parameters on clathrin lattice properties.
View details for DOI 10.1039/c4sm01650e
View details for Web of Science ID 000346911600002
-
Hybrid Diamond-Silicon Carbide Structures Incorporating Silicon-Vacancies in Diamond as Quantum Emitters
IEEE. 2015
View details for Web of Science ID 000370627101430
-
Physical properties of materials derived from diamondoid molecules
REPORTS ON PROGRESS IN PHYSICS
2015; 78 (1)
View details for DOI 10.1088/0034-4885/78/1/016501
View details for Web of Science ID 000348760600003
View details for PubMedID 25551840
-
Thermally-enhanced minority carrier collection in hematite during photoelectrochemical water and sulfite oxidation
JOURNAL OF MATERIALS CHEMISTRY A
2015; 3 (20): 10801-10810
View details for DOI 10.1039/c5ta02108a
View details for Web of Science ID 000354395400024
-
Physical properties of materials derived from diamondoid molecules.
Reports on progress in physics. Physical Society (Great Britain)
2015; 78 (1): 016501-?
Abstract
Diamondoids are small hydrocarbon molecules which have the same rigid cage structure as bulk diamond. They can be considered the smallest nanoparticles of diamond. They exhibit a mixture of properties inherited from bulk cubic diamond as well as a number of unique properties related to their size and structure. Diamondoids with different sizes and shapes can be separated and purified, enabling detailed studies of the effects of size and structure on the diamondoids' properties and also allowing the creation of chemically functionalized diamondoids which can be used to create new materials. Most notable among these new materials are self-assembled monolayers of diamondoid-thiols, which exhibit a number of unique electron emission properties.
View details for DOI 10.1088/0034-4885/78/1/016501
View details for PubMedID 25551840
-
Fabrication of sub-cell size "spiky'' nanoparticles and their interfaces with biological cells
JOURNAL OF MATERIALS CHEMISTRY B
2015; 3 (26): 5155-5160
View details for DOI 10.1039/c5tb00452g
View details for Web of Science ID 000356964700003
-
Membrane indentation triggers clathrin lattice reorganization and fluidization.
Soft matter
2014; 11 (3): 439-448
Abstract
Clathrin-mediated endocytosis involves the coordinated assembly of clathrin cages around membrane indentations, necessitating fluid-like reorganization followed by solid-like stabilization. This apparent duality in clathrin's in vivo behavior provides some indication that the physical interactions between clathrin triskelia and the membrane effect a local response that triggers fluid-solid transformations within the clathrin lattice. We develop a computational model to study the response of clathrin protein lattices to spherical deformations of the underlying flexible membrane. These deformations are similar to the shapes assumed during intracellular trafficking of nanoparticles. Through Monte Carlo simulations of clathrin-on-membrane systems, we observe that these membrane indentations give rise to a greater than normal defect density within the overlaid clathrin lattice. In many cases, the bulk surrounding lattice remains in a crystalline phase, and the extra defects are localized to the regions of large curvature. This can be explained by the fact that the in-plane elastic stress in the clathrin lattice are reduced by coupling defects to highly curved regions. The presence of defects brought about by indentation can result in the fluidization of a lattice that would otherwise be crystalline, resulting in an indentation-driven, defect-mediated phase transition. Altering subunit elasticity or membrane properties is shown to drive a similar transition, and we present phase diagrams that map out the combined effects of these parameters on clathrin lattice properties.
View details for DOI 10.1039/c4sm01650e
View details for PubMedID 25412023
-
Penetration of Cell Membranes and Synthetic Lipid Bilayers by Nanoprobes (vol 107, pg 2091, 2014)
BIOPHYSICAL JOURNAL
2014; 107 (12): 3034
View details for DOI 10.1016/j.bpj.2014.11.3455
View details for Web of Science ID 000346434200035
-
Penetration of Cell Membranes and Synthetic Lipid Bilayers by Nanoprobes
BIOPHYSICAL JOURNAL
2014; 107 (9): 2091-2100
Abstract
Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50-500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes.
View details for DOI 10.1016/j.bpj.2014.09.023
View details for Web of Science ID 000344232500011
View details for PubMedCentralID PMC4223211
-
Penetration of cell membranes and synthetic lipid bilayers by nanoprobes.
Biophysical journal
2014; 107 (9): 2091-100
Abstract
Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50-500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes.
View details for DOI 10.1016/j.bpj.2014.09.023
View details for PubMedID 25418094
View details for PubMedCentralID PMC4223211
-
Plasma Membrane and Actin Cytoskeleton as Synergistic Barriers to Nanowire Cell Penetration
LANGMUIR
2014; 30 (41): 12362-12367
Abstract
Nanowires are a rapidly emerging platform for manipulation of and material delivery directly into the cell cytosol. These high aspect ratio structures can breach the lipid membrane; however, the yield of penetrant structures is low, and the mechanism is largely unknown. In particular, some nanostructures appear to defeat the membrane transiently, while others can retain long-term access. Here, we examine if local dissolution of the lipid membrane, actin cytoskeleton, or both can enhance nanowire penetration. It is possible that, during cell contact, membrane rupture occurs; however, if the nanostructures do not penetrate the cytoskeleton, the membrane may reclose over a relatively short time frame. We show with quantitative analysis of the number of penetrating nanowires that the lipid bilayer and actin cytoskeleton are synergistic barriers to nanowire cell access, yet chemical poration through both is still insufficient to increase long-term access for adhered cells.
View details for DOI 10.1021/la502273f
View details for Web of Science ID 000343638800032
-
Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration.
Langmuir
2014; 30 (41): 12362-12367
Abstract
Nanowires are a rapidly emerging platform for manipulation of and material delivery directly into the cell cytosol. These high aspect ratio structures can breach the lipid membrane; however, the yield of penetrant structures is low, and the mechanism is largely unknown. In particular, some nanostructures appear to defeat the membrane transiently, while others can retain long-term access. Here, we examine if local dissolution of the lipid membrane, actin cytoskeleton, or both can enhance nanowire penetration. It is possible that, during cell contact, membrane rupture occurs; however, if the nanostructures do not penetrate the cytoskeleton, the membrane may reclose over a relatively short time frame. We show with quantitative analysis of the number of penetrating nanowires that the lipid bilayer and actin cytoskeleton are synergistic barriers to nanowire cell access, yet chemical poration through both is still insufficient to increase long-term access for adhered cells.
View details for DOI 10.1021/la502273f
View details for PubMedID 25244597
-
Microfabricated Thermally Isolated Low Work-Function Emitter
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
2014; 23 (5): 1182-1187
View details for DOI 10.1109/JMEMS.2014.2307882
View details for Web of Science ID 000343318500019
-
Intracellular nanoprobes: Membrane penetration
AMER CHEMICAL SOC. 2014
View details for Web of Science ID 000349167403865
-
Integrating membrane electrodes for cell recording
AMER CHEMICAL SOC. 2014
View details for Web of Science ID 000349167403704
-
Rheology and simulation of 2-dimensional clathrin protein network assembly.
Soft matter
2014; 10 (33): 6219-6227
Abstract
Clathrin is a three-legged protein complex that assembles into lattice structures on the cell membrane and transforms into fullerene-like cages during endocytosis. This dynamic structural flexibility makes clathrin an attractive building block for guided assembly. The assembly dynamics and the mechanical properties of clathrin protein lattices are studied using rheological measurements and theoretical modelling in an effort to better understand two dynamic processes: protein adsorption to the interface and assembly into a network. We find that percolation models for protein network formation are insufficient to describe clathrin network formation, but with Monte Carlo simulations we can describe the dynamics of network formation very well. Insights from this work can be used to design new bio-inspired nano-assembly systems.
View details for DOI 10.1039/c4sm00025k
View details for PubMedID 25012232
-
Rapid Calcium Modulation in Cells: Direct Intracellular Access using Nanostraws
CELL PRESS. 2014: 432A
View details for DOI 10.1016/j.bpj.2013.11.2431
View details for Web of Science ID 000337000402419
-
Rough-smooth-rough dynamic interface growth in supported lipid bilayers
PHYSICAL REVIEW E
2014; 89 (1)
Abstract
The role of lipid bilayer viscoelasticity and the substrate-bilayer interactions on the spreading behavior of supported phospholipid bilayer membranes is studied using fluorescence microscopy. Unlike the monotonic roughening observed on silica or in other dynamic interface growth systems, a unique rough-smooth-rough (RSR) interface transition occurred on chromium oxide with a roughness exponent of 0.45 ± 0.04. This RSR transition is attributed to the elasticity of the lipid bilayer which is initially under compression due to surface interactions, and is well approximated by adding an elastic term to the quenched noise Edwards-Wilkinson equation. A phase diagram depicting the conditions necessary to observe RSR transitions in dynamic interface systems is derived, revealing the classes of dynamically evolving systems is broader than previously thought, and the viscoelastic nature of the lipid bilayer may play a role in supported membrane behavior.
View details for DOI 10.1103/PhysRevE.89.012404
View details for Web of Science ID 000332162500012
View details for PubMedID 24580234
-
Quantification of nanowire penetration into living cells.
Nature communications
2014; 5: 3613-?
Abstract
High-aspect ratio nanostructures such as nanowires and nanotubes are a powerful new tool for accessing the cell interior for delivery and sensing. Controlling and optimizing cellular access is a critical challenge for this new technology, yet even the most basic aspect of this process, whether these structures directly penetrate the cell membrane, is still unknown. Here we report the first quantification of hollow nanowires-nanostraws-that directly penetrate the membrane by observing dynamic ion delivery from each 100-nm diameter nanostraw. We discover that penetration is a rare event: 7.1±2.7% of the nanostraws penetrate the cell to provide cytosolic access for an extended period for an average of 10.7±5.8 penetrations per cell. Using time-resolved delivery, the kinetics of the first penetration event are shown to be adhesion dependent and coincident with recruitment of focal adhesion-associated proteins. These measurements provide a quantitative basis for understanding nanowire-cell interactions, and a means for rapidly assessing membrane penetration.
View details for DOI 10.1038/ncomms4613
View details for PubMedID 24710350
-
Quantification of nanowire penetration into living cells.
Nature communications
2014; 5: 3613-?
Abstract
High-aspect ratio nanostructures such as nanowires and nanotubes are a powerful new tool for accessing the cell interior for delivery and sensing. Controlling and optimizing cellular access is a critical challenge for this new technology, yet even the most basic aspect of this process, whether these structures directly penetrate the cell membrane, is still unknown. Here we report the first quantification of hollow nanowires-nanostraws-that directly penetrate the membrane by observing dynamic ion delivery from each 100-nm diameter nanostraw. We discover that penetration is a rare event: 7.1±2.7% of the nanostraws penetrate the cell to provide cytosolic access for an extended period for an average of 10.7±5.8 penetrations per cell. Using time-resolved delivery, the kinetics of the first penetration event are shown to be adhesion dependent and coincident with recruitment of focal adhesion-associated proteins. These measurements provide a quantitative basis for understanding nanowire-cell interactions, and a means for rapidly assessing membrane penetration.
View details for DOI 10.1038/ncomms4613
View details for PubMedID 24710350
-
Mechanical Model of Vertical Nanowire Cell Penetration
NANO LETTERS
2013; 13 (12): 6002-6008
Abstract
Direct access into cells' interiors is essential for biomolecular delivery, gene transfection, and electrical recordings yet is challenging due to the cell membrane barrier. Recently, molecular delivery using vertical nanowires (NWs) has been demonstrated for introducing biomolecules into a large number of cells in parallel. However, the microscopic understanding of how and when the nanowires penetrate cell membranes is still lacking, and the degree to which actual membrane penetration occurs is controversial. Here we present results from a mechanical continuum model of elastic cell membrane penetration through two mechanisms, namely through "impaling" as cells land onto a bed of nanowires, and through "adhesion-mediated" penetration, which occurs as cells spread on the substrate and generate adhesion force. Our results reveal that penetration is much more effective through the adhesion mechanism, with NW geometry and cell stiffness being critically important. Stiffer cells have higher penetration efficiency, but are more sensitive to NW geometry. These results provide a guide to designing nanowires for applications in cell membrane penetration.
View details for DOI 10.1021/nl403201a
View details for Web of Science ID 000328439200039
View details for PubMedID 24237230
-
Sterically directed chalcogenides: Self-assembling superstructures of n-dimensional materials
AMER CHEMICAL SOC. 2013
View details for Web of Science ID 000329618402333
-
A semiconductor/mixed ion and electron conductor heterojunction for elevated-temperature water splitting.
Physical chemistry chemical physics
2013; 15 (37): 15459-15469
Abstract
Photoelectrochemical cells (PECs) have been studied extensively for dissociating water into hydrogen and oxygen. Key bottlenecks for achieving high solar-to-hydrogen efficiency in PECs include increasing solar spectrum utilization, surmounting overpotential losses, and aligning the absorber/electrochemical redox levels. We propose a new class of solid-state PECs based on mixed ionic and electronic conducting (MIEC) oxides that operates at temperatures significantly above ambient and utilizes both the light and thermal energy available from concentrated sunlight to dissociate water vapor. Unlike thermochemical and hybrid photo-thermochemical water-splitting routes, the elevated-temperature PEC is a single-step approach operating isothermally. At the heart of the solid-state PEC is a semiconductor light absorber coated with a thin MIEC layer for improved catalytic activity, electrochemical stability, and ionic conduction. The MIEC, placed between the gas phase and the semiconductor light absorber, provides a facile path for minority carriers to reach the water vapor as well as a path for the ionic carriers to reach the solid electrolyte. Elevated temperature operation allows reasonable band misalignments at the interfaces to be overcome, reduces the required overpotential, and facilitates rapid product diffusion away from the surface. In this work, we simulate the behavior of an oxygen-ion-conducting photocathode in 1-D. Using the detailed-balance approach, in conjunction with recombination and electrochemical reaction rates, the practical efficiency is calculated as a function of temperature, solar flux, and select material properties. For a non-degenerate light absorber with a 2.0 eV band-gap and an uphill band offset of 0.3 eV, an efficiency of 17% and 11% is predicted at 723 and 873 K, respectively.
View details for DOI 10.1039/c3cp52536h
View details for PubMedID 23939203
-
Covalent attachment of diamondoid phosphonic Acid dichlorides to tungsten oxide surfaces.
Langmuir
2013; 29 (31): 9790-9797
Abstract
Diamondoids (nanometer-sized diamond-like hydrocarbons) are a novel class of carbon nanomaterials that exhibit negative electron affinity (NEA) and strong electron-phonon scattering. Surface-bound diamondoid monolayers exhibit monochromatic photoemission, a unique property that makes them ideal electron sources for electron-beam lithography and high-resolution electron microscopy. However, these applications are limited by the stability of the chemical bonding of diamondoids on surfaces. Here we demonstrate the stable covalent attachment of diamantane phosphonic dichloride on tungsten/tungsten oxide surfaces. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy revealed that diamondoid-functionalized tungsten oxide films were stable up to 300-350 °C, a substantial improvement over conventional diamondoid thiolate monolayers on gold, which dissociate at 100-200 °C. Extreme ultraviolet (EUV) light stimulated photoemission from these diamondoid phosphonate monolayers exhibited a characteristic monochromatic NEA peak with 0.2 eV full width at half-maximum (fwhm) at room temperature, showing that the unique monochromatization property of diamondoids remained intact after attachment. Our results demonstrate that phosphonic dichloride functionality is a promising approach for forming stable diamondoid monolayers for elevated temperature and high-current applications such as electron emission and coatings in micro/nano electromechanical systems (MEMS/NEMS).
View details for DOI 10.1021/la401781e
View details for PubMedID 23855923
-
High-Bandwidth AFM Probes for Imaging in Air and Fluid
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
2013; 22 (3): 603-612
View details for DOI 10.1109/JMEMS.2012.2235822
View details for Web of Science ID 000319827700011
-
Nanostraw-electroporation system for highly efficient intracellular delivery and transfection.
ACS nano
2013; 7 (5): 4351-4358
Abstract
Nondestructive introduction of genes, proteins, and small molecules into mammalian cells with high efficiency is a challenging, yet critical, process. Here we demonstrate a simple nanoelectroporation platform to achieve highly efficient molecular delivery and high transfection yields with excellent uniformity and cell viability. The system is built on alumina nanostraws extending from a track-etched membrane, forming an array of hollow nanowires connected to an underlying microfluidic channel. Cellular engulfment of the nanostraws provides an intimate contact, significantly reducing the necessary electroporation voltage and increasing homogeneity over a large area. Biomolecule delivery is achieved by diffusion through the nanostraws and enhanced by electrophoresis during pulsing. The system was demonstrated to offer excellent spatial, temporal, and dose control for delivery, as well as providing high-yield cotransfection and sequential transfection.
View details for DOI 10.1021/nn400874a
View details for PubMedID 23597131
-
Measurement of elastic properties in fluid using high bandwidth atomic force microscope probes
APPLIED PHYSICS LETTERS
2013; 102 (10)
View details for DOI 10.1063/1.4795598
View details for Web of Science ID 000316501200074
-
Nanostraw-Mediated Intracellular Delivery: Direct Observation of Cell/Nanotube Interfaces
57th Annual Meeting of the Biophysical-Society
CELL PRESS. 2013: 194A–194A
View details for Web of Science ID 000316074301491
-
Microbead-separated thermionic energy converter with enhanced emission current
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
2013; 15 (34): 14442-14446
Abstract
The efficiency of thermionic energy converters is a strong function of the inter-electrode separation due to space-charge limitations. Here we demonstrate vacuum thermionic energy converters constructed using barium dispenser cathodes and thin film tungsten anodes, separated by size specific alumina microbeads for simple device fabrication and inter-electrode gap control. The current and device efficiency at the maximum power point are strongly dependent on the inter-electrode gap, with a maximum device efficiency of 0.61% observed for a gap on the order of 5 μm. Paths to further reductions in space charge and improved anode work function are outlined with potential for over an order of magnitude improvement in output power and efficiency.
View details for DOI 10.1039/c3cp52895b
View details for Web of Science ID 000322725000036
View details for PubMedID 23881241
-
Photon-enhanced thermionic emission from heterostructures with low interface recombination.
Nature communications
2013; 4: 1576-?
Abstract
Photon-enhanced thermionic emission is a method of solar-energy conversion that promises to combine photon and thermal processes into a single mechanism, overcoming fundamental limits on the efficiency of photovoltaic cells. Photon-enhanced thermionic emission relies on vacuum emission of photoexcited electrons that are in thermal equilibrium with a semiconductor lattice, avoiding challenging non-equilibrium requirements and exotic material properties. However, although previous work demonstrated the photon-enhanced thermionic emission effect, efficiency has until now remained very low. Here we describe electron-emission measurements on a GaAs/AlGaAs heterostructure that introduces an internal interface, decoupling the basic physics of photon-enhanced thermionic emission from the vacuum emission process. Quantum efficiencies are dramatically higher than in previous experiments because of low interface recombination and are projected to increase another order of magnitude with more stable, low work-function coatings. The results highlight the effectiveness of the photon-enhanced thermionic emission process and demonstrate that efficient photon-enhanced thermionic emission is achievable, a key step towards realistic photon-enhanced thermionic emission based energy conversion.
View details for DOI 10.1038/ncomms2577
View details for PubMedID 23481384
- Nanostraw–Electroporation System for Highly Efficient Intracellular Delivery and Transfection Acs Nano 2013
- Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices Nat Commun 2013; 4: 1711
- Measurement of elastic properties in fluid using high bandwidth atomic force microscope probes Applied Physics Letters 2013; 102: 103111 (4 pp.)-103111 (4 pp.)
- Photon-enhanced thermionic emission from heterostructures with low interface recombination Nat Commun 2013; 4: 1576
-
Photon-enhanced thermionic emission from heterostructures with low interface recombination.
Nature communications
2013; 4: 1576-?
Abstract
Photon-enhanced thermionic emission is a method of solar-energy conversion that promises to combine photon and thermal processes into a single mechanism, overcoming fundamental limits on the efficiency of photovoltaic cells. Photon-enhanced thermionic emission relies on vacuum emission of photoexcited electrons that are in thermal equilibrium with a semiconductor lattice, avoiding challenging non-equilibrium requirements and exotic material properties. However, although previous work demonstrated the photon-enhanced thermionic emission effect, efficiency has until now remained very low. Here we describe electron-emission measurements on a GaAs/AlGaAs heterostructure that introduces an internal interface, decoupling the basic physics of photon-enhanced thermionic emission from the vacuum emission process. Quantum efficiencies are dramatically higher than in previous experiments because of low interface recombination and are projected to increase another order of magnitude with more stable, low work-function coatings. The results highlight the effectiveness of the photon-enhanced thermionic emission process and demonstrate that efficient photon-enhanced thermionic emission is achievable, a key step towards realistic photon-enhanced thermionic emission based energy conversion.
View details for DOI 10.1038/ncomms2577
View details for PubMedID 23481384
-
Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices.
Nature communications
2013; 4: 1711-?
Abstract
Wavelength separation and detection is generally performed by spatial dispersal of incident light onto separate detectors, or by appropriate wavelength-selective filters. Here we demonstrate direct wavelength determination of monochromatic light in a power-independent fashion with a single metal-insulator-metal device. This simple platform allows facile fabrication and scaling, and may be useful for on-chip optical communications. Although a single wavelength is power-independent, with two or more concurrent input signals, the output obeys a simple current sum rule, allowing the output to be tuned by choosing the input wavelengths and power. Finally, we demonstrate real-time deconvolution of three different wavelength asynchronous signals.
View details for DOI 10.1038/ncomms2728
View details for PubMedID 23591878
-
Photocathode device using diamondoid and cesium bromide films
APPLIED PHYSICS LETTERS
2012; 101 (24)
View details for DOI 10.1063/1.4769043
View details for Web of Science ID 000312490000024
-
A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission
JOURNAL OF APPLIED PHYSICS
2012; 112 (9)
View details for DOI 10.1063/1.4764106
View details for Web of Science ID 000311968400139
-
Diamondoid coating enables disruptive approach for chemical and magnetic imaging with 10 nm spatial resolution
APPLIED PHYSICS LETTERS
2012; 101 (16)
View details for DOI 10.1063/1.4756893
View details for Web of Science ID 000310669300052
-
Nanostraws for Direct Fluidic Intracellular Access
NANO LETTERS
2012; 12 (8): 3881-3886
Abstract
Nanomaterials are promising candidates to improve the delivery efficiency and control of active agents such as DNA or drugs directly into cells. Here we demonstrate cell-culture platforms of nanotemplated "nanostraws" that pierce the cell membrane, providing a permanent fluidic pipeline into the cell for direct cytosolic access. Conventional polymeric track-etch cell culture membranes are alumina coated and etched to produce fields of nanostraws with controllable diameter, thickness, and height. Small molecules and ions were successfully transported into the cytosol with 40 and 70% efficiency, respectively, while GFP plasmids were successfully delivered and expressed. These platforms open the way for active, reproducible delivery of a wide variety of species into cells without endocytosis.
View details for DOI 10.1021/nl204051v
View details for Web of Science ID 000307211000001
View details for PubMedID 22166016
-
Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation
NANO LETTERS
2012; 12 (7): 3369-3377
Abstract
Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous.
View details for DOI 10.1021/nl204175t
View details for Web of Science ID 000306296200004
View details for PubMedID 22650417
View details for PubMedCentralID PMC3495189
-
Optimal emitter-collector gap for thermionic energy converters
APPLIED PHYSICS LETTERS
2012; 100 (17)
View details for DOI 10.1063/1.4707379
View details for Web of Science ID 000303340300106
-
Mesoporous Thin-Film on Highly-Sensitive Resonant Chemical Sensor for Relative Humidity and CO2 Detection
ANALYTICAL CHEMISTRY
2012; 84 (7): 3063-3066
Abstract
Distributed sensing of gas-phase chemicals is a promising application for mesoporous materials when combined with highly sensitive miniaturized gas sensors. We present a direct application of a mesoporous silica thin film on a highly sensitive miniaturized resonant chemical sensor with a mass sensitivity at the zeptogram scale for relative humidity and CO(2) detection. Using mesoporous silica thin-film, we report one of the lowest volume resolutions and a sensitive detection of 5.1 × 10(-4)% RH/Hz to water vapor in N(2), which is 70 times higher than a device with a nontemplated silica layer. In addition, a mesoporous thin-film that is functionalized with an amino-group is directly applied on the resonant sensor, which exhibits a volume sensitivity of 1.6 × 10(-4)%/Hz and a volume resolution of 1.82 × 10(-4)% to CO(2) in N(2).
View details for DOI 10.1021/ac300225c
View details for Web of Science ID 000302829800006
View details for PubMedID 22372606
-
Energetics and dynamics of direct cell-penetrating peptide translocation using atomic force microscopy
AMER CHEMICAL SOC. 2012
View details for Web of Science ID 000324475103485
-
Direct Penetration of Cell-Penetrating Peptides Across Lipid Bilayers
CELL PRESS. 2012: 487A
View details for DOI 10.1016/j.bpj.2011.11.2672
View details for Web of Science ID 000321561203352
-
Mechanical Model of Cell Membrane Penetration by Vertical Nanowires
CELL PRESS. 2012: 205A
View details for DOI 10.1016/j.bpj.2011.11.1116
View details for Web of Science ID 000321561201332
-
Novel Nanoscale Patch-Clamp Arrays for Probing Neuronal Electrical Activities
CELL PRESS. 2012: 299A
View details for DOI 10.1016/j.bpj.2011.11.1654
View details for Web of Science ID 000321561202106
-
Nanostraws for Direct Fluidic Intracellular Access
CELL PRESS. 2012: 583A
View details for DOI 10.1016/j.bpj.2011.11.3178
View details for Web of Science ID 000321561204128
-
MICROFABRICATED SILICON CARBIDE THERMIONIC ENERGY CONVERTER FOR SOLAR ELECTRICITY GENERATION
25th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
IEEE. 2012
View details for Web of Science ID 000312912800317
- Diamondoid coating enables disruptive approach for chemical and magnetic imaging with 10 nm spatial resolution Applied Physics Letters 2012; 101: 163101 (5 pp.)-163101 (5 pp.)163101 (5 pp.)
- Optimal emitter-collector gap for thermionic energy converters Applied Physics Letters 2012; 100
- A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission Journal of Applied Physics 2012; 112: 094907 (10 pp.)-094907 (10 pp.)094907 (10 pp.)
- Photocathode device using diamondoid and cesium bromide films Applied Physics Letters 2012; 101: 241605 (5 pp.)-241605 (5 pp.)
-
Plasmonic Energy Collection through Hot Carrier Extraction
NANO LETTERS
2011; 11 (12): 5426-5430
Abstract
Conversion of light into direct current is important for applications ranging from energy conversion to photodetection, yet often challenging over broad photon frequencies. Here we show a new architecture based on surface plasmon excitation within a metal-insulator-metal device that produces power based on spatial confinement of electron excitation through plasmon absorption. Plasmons excited in the upper metal are absorbed, creating a high concentration of hot electrons which can inject above or tunnel through the thin insulating barrier, producing current. The theoretical power conversion efficiency enhancement achieved can be almost 40 times larger than that of direct illumination while utilizing a broad spectrum of IR to visible wavelengths. Here we present both theoretical estimates of the power conversion efficiency and experimental device measurements, which show clear rectification and power conversion behavior.
View details for DOI 10.1021/nl203196z
View details for Web of Science ID 000297950200056
View details for PubMedID 22023372
-
Photoluminescence of diamondoid crystals
JOURNAL OF APPLIED PHYSICS
2011; 110 (9)
View details for DOI 10.1063/1.3657522
View details for Web of Science ID 000297062100028
-
Molecular Structure Influences the Stability of Membrane Penetrating Biointerfaces
NANO LETTERS
2011; 11 (5): 2066-2070
Abstract
Nanoscale patterning of hydrophobic bands on otherwise hydrophilic surfaces allows integration of inorganic structures through biological membranes, reminiscent of transmembrane proteins. Here we show that a set of innate molecular properties of the self-assembling hydrophobic band determine the resulting interface stability. Surprisingly, hydrophobicity is found to be a secondary factor with monolayer crystallinity the major determinate of interface strength. These results begin to establish guidelines for seamless bioinorganic integration of nanoscale probes with lipid membranes.
View details for DOI 10.1021/nl200542m
View details for Web of Science ID 000290373000037
View details for PubMedID 21469728
-
Engineering cell access with nano-functionalized posts
241st National Meeting and Exposition of the American-Chemical-Society (ACS)
AMER CHEMICAL SOC. 2011
View details for Web of Science ID 000291982803522
-
Theoretical analysis of hot electron collection in metal-insulator-metal devices
Conference on Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II
SPIE-INT SOC OPTICAL ENGINEERING. 2011
View details for DOI 10.1117/12.894250
View details for Web of Science ID 000303797800011
- Photoluminescence of Diamond Crystals Journal of Applied Physics 2011
- Plasmonic energy collection through hot carrier extraction Nano Letters 2011; 11: 5426-30
- Nanostraws for Direct Fluidic Intracellular Access Nano Letters 2011
-
Rapid spatial and temporal controlled signal delivery over large cell culture areas
LAB ON A CHIP
2011; 11 (18): 3057-3063
Abstract
Controlled chemical delivery in microfluidic cell culture devices often relies on slowly evolving diffusive gradients, as the spatial and temporal control provided by fluid flow results in significant cell-perturbation. In this paper we introduce a microfluidic device architecture that allows for rapid spatial and temporal soluble signal delivery over large cell culture areas without fluid flow over the cells. In these devices the cell culture well is divided from a microfluidic channel located directly underneath the chamber by a nanoporous membrane. This configuration requires chemical signals in the microchannel to only diffuse through the thin membrane into large cell culture area, rather than diffuse in from the sides. The spatial chemical pattern within the microfluidic channel was rapidly transferred to the cell culture area with good fidelity through diffusion. The cellular temporal response to a step-function signal showed that dye reached the cell culture surface within 45 s, and achieved a static concentration in under 6 min. Chemical pulses of less than one minute were possible by temporally alternating the signal within the microfluidic channel, enabling rapid flow-free chemical microenvironment control for large cell culture areas.
View details for DOI 10.1039/c1lc20311h
View details for Web of Science ID 000294263400004
View details for PubMedID 21805010
-
Nanoscale patterning controls inorganic-membrane interface structure
NANOSCALE
2011; 3 (2): 391-400
Abstract
The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a 'fused' interface and a 'T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.
View details for DOI 10.1039/c0nr00486c
View details for Web of Science ID 000287363500006
View details for PubMedID 20931126
-
ENZYME ASSAYS Detection by failure
NATURE CHEMISTRY
2010; 2 (12): 1006-1007
View details for DOI 10.1038/nchem.914
View details for Web of Science ID 000284527300004
View details for PubMedID 21107359
-
Effects of tip-induced material reorganization in dynamic force spectroscopy
PHYSICAL REVIEW E
2010; 82 (3)
Abstract
Dynamic force spectroscopy (DFS) has become a well-established method for characterizing bond strength, yet may also be useful for examining more complex phenomena such as dynamic processes or multiple reaction pathways. Here, we analyze the case where contact between an atomic force microscopy (AFM) tip and the sample induces sample reorganization during testing. Surface contact often causes molecular rearrangement in soft materials, which could also result in an altered reaction energy landscape. We model this situation by allowing the energy barrier position and magnitude to be time-dependent functions with a characteristic time scale τ . We find dynamic energy barriers result in two linear regimes with a dramatic transition near t=τ in the DFS analysis. The sharp transition region is a hallmark of a moving energy barrier and indicates the time scale of reorganization. These results illustrate that DFS may be useful to monitor dynamic transitions and also highlight the importance of extending the loading rate range used in DFS studies.
View details for DOI 10.1103/PhysRevE.82.031911
View details for Web of Science ID 000282133400008
View details for PubMedID 21230112
-
Photon-enhanced thermionic emission for solar concentrator systems
NATURE MATERIALS
2010; 9 (9): 762-767
Abstract
Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.
View details for DOI 10.1038/NMAT2814
View details for Web of Science ID 000281178400029
View details for PubMedID 20676086
-
Gigaohm resistance membrane seals with stealth probe electrodes
APPLIED PHYSICS LETTERS
2010; 97 (3)
View details for DOI 10.1063/1.3464954
View details for Web of Science ID 000280255800104
-
An Electrostatic Model for DNA Surface Hybridization
BIOPHYSICAL JOURNAL
2010; 98 (12): 2954-2963
Abstract
DNA hybridization at surfaces is a crucial process for biomolecular detection, genotyping, and gene expression analysis. However, hybridization density and kinetics can be strongly inhibited by electric fields from the negatively charged DNA as the reaction proceeds. Here, we develop an electrostatic model to optimize hybridization density and kinetics as a function of DNA surface density, salt concentrations, and applied voltages. The electrostatic repulsion from a DNA surface layer is calculated numerically and incorporated into a modified Langmuir scheme, allowing kinetic suppression of hybridization. At the low DNA probe densities typically used in assays (<10(13)/cm(2)), electrostatics effects are largely screened and hybridization is completed with fast kinetics. However, higher hybridization densities can be achieved at intermediate DNA surface densities, albeit with slower kinetics. The application of positive voltages circumvents issues resulting from the very high DNA probe density, allowing highly enhanced hybridization densities and accelerated kinetics, and validating recent experimental measurements.
View details for DOI 10.1016/j.bpj.2010.03.017
View details for Web of Science ID 000278913500024
View details for PubMedID 20550908
View details for PubMedCentralID PMC2884251
-
Dynamic actuation using nano-bio interfaces
MATERIALS TODAY
2010; 13 (6): 14-22
View details for Web of Science ID 000278390600010
-
Continuum model of mechanical interactions between biological cells and artificial nanostructures
BIOINTERPHASES
2010; 5 (2): 37-44
Abstract
The controlled insertion of artificial nanostructures into biological cells has been utilized for patch clamping, targeted drug delivery, cell lysing, and cell mechanics measurements. In this work, an elastic continuum model is implemented to treat the deformation of spherical cells in solution due to their interaction with cylindrical probes. At small deformations, the force varies nonlinearly with indentation due to global deformation of the cell shape. However, at large indentations, the force varies linearly with indentation due to more localized deformations. These trends are consistent with experimental measurements under comparable conditions and can be used to develop design rules for optimizing probe-cell interactions.
View details for DOI 10.1116/1.3431960
View details for Web of Science ID 000282333300003
View details for PubMedID 20831347
-
Single-Step Process to Reconstitute Cell Membranes on Solid Supports
LANGMUIR
2010; 26 (7): 4635-4638
Abstract
A new technique is presented to create supported lipid bilayers from whole cell lipids without the use of detergent or solvent extraction. In a modification of the bubble collapse deposition (BCD) technique, an air bubble is created underwater and brought into contact with a population of cells. The high-energy air/water interface extracts the lipid component of the cell membrane, which can subsequently be redeposited as a fluid bilayer on another substrate. The resulting bilayers were characterized with fluorescence microscopy, and it was found that both leaflets of the cell membrane are transferred but the cytoskeleton is not. The resulting supported bilayer was fluid over an area much larger than a single cell, demonstrating the capacity to create large, continuous bilayer samples. This capability to create fluid, biologically relevant bilayers will facilitate the use of high-resolution scanning microscopy techniques in the study of membrane-related processes.
View details for DOI 10.1021/la100583f
View details for Web of Science ID 000275995100020
View details for PubMedID 20205459
-
Fusion of biomimetic stealth probes into lipid bilayer cores
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2010; 107 (13): 5815-5820
Abstract
Many biomaterials are designed to regulate the interactions between artificial and natural surfaces. However, when materials are inserted through the cell membrane itself the interface formed between the interior edge of the membrane and the material surface is not well understood and poorly controlled. Here we demonstrate that by replicating the nanometer-scale hydrophilic-hydrophobic-hydrophilic architecture of transmembrane proteins, artificial "stealth" probes spontaneously insert and anchor within the lipid bilayer core, forming a high-strength interface. These nanometer-scale hydrophobic bands are readily fabricated on metallic probes by functionalizing the exposed sidewall of an ultrathin evaporated Au metal layer rather than by lithography. Penetration and adhesion forces for butanethiol and dodecanethiol functionalized probes were directly measured using atomic force microscopy (AFM) on thick stacks of lipid bilayers to eliminate substrate effects. The penetration dynamics were starkly different for hydrophobic versus hydrophilic probes. Both 5- and 10 nm thick hydrophobically functionalized probes naturally resided within the lipid core, while hydrophilic probes remained in the aqueous region. Surprisingly, the barrier to probe penetration with short butanethiol chains (E(o,5 nm) = 21.8k(b)T, E(o,10 nm) = 15.3k(b)T) was dramatically higher than longer dodecanethiol chains (E(o,5 nm) = 14.0k(b)T, E(o,10 nm) = 10.9k(b)T), indicating that molecular mobility and orientation also play a role in addition to hydrophobicity in determining interface stability. These results highlight a new strategy for designing artificial cell interfaces that can nondestructively penetrate the lipid bilayer.
View details for DOI 10.1073/pnas.0909250107
View details for Web of Science ID 000276159500024
View details for PubMedID 20212151
View details for PubMedCentralID PMC2851869
-
Lateral fusion of lipid membranes to nanoscale functionalized
AMER CHEMICAL SOC. 2010
View details for Web of Science ID 000208189302023
-
Clathrin protein assemblies as a biotemplate
AMER CHEMICAL SOC. 2010
View details for Web of Science ID 000208189301895
-
AFM force spectroscopy on TAT membrane penetration
AMER CHEMICAL SOC. 2010
View details for Web of Science ID 000208189302025
- Gigaohm resistance membrane seals with stealth probe electrodes Applied Physics Letters 2010; 97
-
AFM Force Spectroscopy on TAT Membrane Penetration
CELL PRESS. 2010: 217A–218A
View details for DOI 10.1016/j.bpj.2009.12.1173
View details for Web of Science ID 000208762002085
-
Fusion of Biomimetic 'Stealth' Probes into Lipid Bilayer Cores
CELL PRESS. 2010: 596A
View details for DOI 10.1016/j.bpj.2009.12.3245
View details for Web of Science ID 000208762005491
- Fusion of Biomimetic ‘Stealth’ Probes into Lipid Bilayer Cores 2010
- Effects of tip-induced material reorganization in dynamic force spectroscopy Phys. Rev. E 2010; 82: 31911
- ENZYME ASSAYS: Detection by failure Nature Chemistry 2010; 2: 1006-1007
-
Directed Hybridization and Melting of DNA Linkers using Counterion-Screened Electric Fields
NANO LETTERS
2009; 9 (10): 3521-3526
Abstract
Dynamic self-assembly using responsive, "smart" materials such as DNA is a promising route toward reversible assembly and patterning of nanostructures for error-corrected fabrication, enhanced biosensors, drug delivery and gene therapy. DNA linkers were designed with strategically placed mismatches, allowing rapid attachment and release from a surface in a counterion-screened electric field. These electrostatic fields are inherently highly localized, directing assembly with nanometer precision while avoiding harmful electrochemical reactions. We show that depending on the sign of the applied field, the DNA hybridization density is strongly enhanced or diminished due to the high negative charge density of immobilized DNA. This use of dynamic fields rather than static templates enables fabrication of heterogeneously hybridized electrodes with different functional moieties, despite the use of identical linker sequences.
View details for DOI 10.1021/nl901710n
View details for Web of Science ID 000270670500025
View details for PubMedID 19606816
-
Determining orientational structure of diamondoid thiols attached to silver using near-edge X-ray absorption fine structure spectroscopy
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
2009; 172 (1-3): 69-77
View details for DOI 10.1016/j.elspec.2009.03.011
View details for Web of Science ID 000267561500011
-
Influence of electrostatic fields in self assembly
AMER CHEMICAL SOC. 2009
View details for Web of Science ID 000207857807784
-
Identification and Passivation of Defects in Self-Assembled Monolayers
LANGMUIR
2009; 25 (5): 2585-2587
Abstract
We demonstrate imaging of nanoscale defects in self-assembled monolayers (SAMs). Atomic layer deposition of aluminum oxide (AlO(x)) onto hydrophobic SAMs is followed by imaging using scanning electron microscopy (SEM). The insulating AlO(x) selectively deposits onto the exposed substrate at defect sites and becomes charged during imaging, providing high contrast even for nanometer scale defects. The deposited AlO(x) also acts as a barrier for electron transfer, thereby simultaneously electrically passivating the defects in the SAM as it labels them.
View details for DOI 10.1021/la804162a
View details for Web of Science ID 000263770800009
View details for PubMedID 19437743
-
Lipid Membrane Penetration Forces from AFM Force Spectroscopy
CELL PRESS. 2009: 389A
View details for Web of Science ID 000426354000087
-
Fusion of Biomimetic 'Stealth' Probes into Lipid Bilayer Cores
CELL PRESS. 2009: 354A
View details for Web of Science ID 000426353300833
-
An Internally Amplified Signal SOI Nano-bridge Biosensor for Electrical Detection of DNA Hybridization
IEEE International SOI Conference 2009
IEEE. 2009: 67–68
View details for Web of Science ID 000276151400029
- Determining orientational structure of diamondoid thiols attached to silver using near-edge X-ray absorption fine structure spectroscopy Journal of Electron Spectroscopy and Related Phenomena 2009; 172: 69-77
-
Origin of the Monochromatic Photoemission Peak in Diamondoid Monolayers
NANO LETTERS
2009; 9 (1): 57-61
Abstract
Recent photoemission experiments have discovered a highly monochromatized secondary electron peak emitted from diamondoid self-assembled monolayers on metal substrates. New experimental data and simulation results are presented to show that a combination of negative electron affinity and strong electron-phonon scattering is responsible for this behavior. The simulation results are generated using a simple Monte Carlo transport algorithm. The simulated spectra recreate the main spectral features of the measured ones.
View details for DOI 10.1021/nl802310k
View details for Web of Science ID 000262519100010
View details for PubMedID 18975993
-
Nanopore-Spanning Lipid Bilayers for Controlled Chemical Release
ADVANCED MATERIALS
2008; 20 (23): 4423-4427
View details for DOI 10.1002/adma.200800969
View details for Web of Science ID 000261937300012
-
Formation and Characterization of Fluid Lipid Bilayers on Alumina
LANGMUIR
2008; 24 (22): 12734-12737
Abstract
Fluid lipid bilayers were deposited on alumina substrates with the use of bubble collapse deposition (BCD). Previous studies using vesicle rupture have required the use of charged lipids or surface functionalization to induce bilayer formation on alumina, but these modifications are not necessary with BCD. Photobleaching experiments reveal that the diffusion coefficient of POPC on alumina is 0.6 microm (2)/s, which is much lower than the 1.4-2.0 microm (2)/s reported on silica. Systematically accounting for roughness, immobile regions and membrane viscosity shows that pinning sites account for about half of this drop in diffusivity. The remainder of the difference is attributed to a more tightly bound water state on the alumina surface, which induces a larger drag on the bilayer.
View details for DOI 10.1021/la802726u
View details for Web of Science ID 000260874800004
View details for PubMedID 18942863
-
Diamondoids as low-kappa dielectric materials
APPLIED PHYSICS LETTERS
2008; 93 (17)
View details for DOI 10.1063/1.3010379
View details for Web of Science ID 000260571800066
-
Near-edge X-ray absorption fine structure spectroscopy of diamondoid thiol monolayers on gold
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
2008; 130 (32): 10536-10544
Abstract
Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 +/- 0.05 and 0.16 +/- 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.
View details for DOI 10.1021/ja711131e
View details for Web of Science ID 000258293800038
View details for PubMedID 18642809
-
Interfacial effects in thin films of polymeric semiconductors
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
2008; 26 (4): 1454-1460
View details for DOI 10.1116/1.2952454
View details for Web of Science ID 000258494400036
-
Electronically activated actin protein polymerization and alignment
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
2008; 130 (25): 7908-7915
Abstract
Biological systems are the paragon of dynamic self-assembly, using a combination of spatially localized protein complexation, ion concentration, and protein modification to coordinate a diverse set of self-assembling components. Biomimetic materials based upon biologically inspired design principles or biological components have had some success at replicating these traits, but have difficulty capturing the dynamic aspects and diversity of biological self-assembly. Here, we demonstrate that the polymerization of ion-sensitive proteins can be dynamically regulated using electronically enhanced ion mixing and monomer concentration. Initially, the global activity of the cytoskeletal protein actin is inhibited using a low-ionic strength buffer that minimizes ion complexation and protein-protein interactions. Nucleation and growth of actin filaments are then triggered by a low-frequency AC voltage, which causes local enhancement of the actin monomer concentration and mixing with Mg(2+). The location and extent of polymerization are governed by the voltage and frequency, producing highly ordered structures unprecedented in bulk experiments. Polymerization rate and filament orientation could be independently controlled using a combination of low-frequency (approximately 100 Hz) and high frequency (1 MHz) AC voltages, creating a range of macromolecular architectures from network hydrogel microparticles to highly aligned arrays of actin filaments with approximately 750 nm periodicity. Since a wide range of proteins are activated upon complexation with charged species, this approach may be generally applicable to a variety of biopolymers and proteins.
View details for DOI 10.1021/ja7103284
View details for Web of Science ID 000256962000042
View details for PubMedID 18507467
-
Creating large area molecular electronic junctions using atomic layer deposition
APPLIED PHYSICS LETTERS
2008; 92 (21)
View details for DOI 10.1063/1.2917870
View details for Web of Science ID 000256303500073
-
A nonvolatile plasmonic switch employing photochromic molecules
NANO LETTERS
2008; 8 (5): 1506-1510
Abstract
We demonstrate a surface plasmon-polariton (SPP) waveguide all-optical switch that combines the unique physical properties of small molecules and metallic (plasmonic) nanostructures. The switch consists of a pair of gratings defined in an aluminum film coated with a 65 nm thick layer of photochromic (PC) molecules. The first grating couples a signal beam consisting of free space photons to SPPs that interact effectively with the PC molecules. These molecules can reversibly be switched between transparent and absorbing states using a free space optical pump. In the transparent (signal "on") state, the SPPs freely propagate through the molecular layer, and in the absorbing (signal "off") state, the SPPs are strongly attenuated. The second grating serves to decouple the SPPs back into a free space optical beam, enabling measurement of the modulated signal with a far-field detector. In a preliminary study, the switching behavior of the PC molecules themselves was confirmed and quantified by surface plasmon resonance spectroscopy. The excellent (16%) overlap of the SPP mode profile with the thin layer of switching molecules enabled efficient switching with power densities of approximately 6.0 mW/cm2 in 1.5 microm x 8 microm devices, resulting in plasmonic switching powers of 0.72 nW per device. Calculations further showed that modulation depths in access of 20 dB can easily be attained in optimized designs. The quantitative experimental and theoretical analysis of the nonvolatile switching behavior in this letter guides the design of future nanoscale optically or electrically pumped optical switches.
View details for DOI 10.1021/nl0808839
View details for Web of Science ID 000255906400042
View details for PubMedID 18412401
-
Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings
APPLIED PHYSICS LETTERS
2008; 92 (11)
View details for DOI 10.1063/1.2898509
View details for Web of Science ID 000254292400085
-
Suspension of nanoparticles in SU-8: Processing and characterization of nanocomposite polymers
European Nano System Conference (ENS '05)
ELSEVIER SCI LTD. 2008: 228–36
View details for DOI 10.1016/j.mejo.2007.05.012
View details for Web of Science ID 000253562400010
- Diamondoids as low-kappa dielectric materials Applied Physics Letters 2008; 93: 172901
- Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings Applied Physics Letters 2008; 92: 113109-1-3
- Creating large area molecular electronic junctions using atomic layer deposition Applied Physics Letters 2008; 92
-
Lipid bilayer deposition and patterning via air bubble collapse
LANGMUIR
2007; 23 (18): 9369-9377
Abstract
We report a new method for forming patterned lipid bilayers on solid substrates. In bubble collapse deposition (BCD), an air bubble is first "inked" with a monolayer of phospholipid molecules and then touched to the surface of a thermally oxidized silicon wafer and the air is slowly withdrawn. As the bubble shrinks, the lipid monolayer pressure increases. Once the monolayer exceeds the collapse pressure, it folds back on itself, depositing a stable lipid bilayer on the surface. These bilayer disks have lateral diffusion coefficients consistent with high quality supported bilayers. By sequentially depositing bilayers in overlapping areas, fluid connections between bilayers of different compositions are formed. Performing vesicle rupture on the open substrate surrounding this bilayer patch results in a fluid but spatially isolated bilayer. Very little intermixing was observed between the vesicle rupture and bubble-deposited bilayers.
View details for DOI 10.1021/la701372b
View details for Web of Science ID 000248886700037
View details for PubMedID 17683151
-
COLL 108-Lateral fusion of lipid membranes to nanoscale functionalized posts
AMER CHEMICAL SOC. 2007
View details for Web of Science ID 000207593902029
-
BIOT 53-Nanoscale reservoirs for spatially and temporally controlled biointerfaces
AMER CHEMICAL SOC. 2007
View details for Web of Science ID 000207593903212
-
Monochromatic electron photoemission from diamondoid monolayers
SCIENCE
2007; 316 (5830): 1460-1462
Abstract
We found monochromatic electron photoemission from large-area self-assembled monolayers of a functionalized diamondoid, [121]tetramantane-6-thiol. Photoelectron spectra of the diamondoid monolayers exhibited a peak at the low-kinetic energy threshold; up to 68% of all emitted electrons were emitted within this single energy peak. The intensity of the emission peak is indicative of diamondoids being negative electron affinity materials. With an energy distribution width of less than 0.5 electron volts, this source of monochromatic electrons may find application in technologies such as electron microscopy, electron beam lithography, and field-emission flat-panel displays.
View details for DOI 10.1126/science.1141811
View details for PubMedID 17556579
-
Dynamic control of biomolecular activity using electrical interfaces.
Soft matter
2007; 3 (3): 267-274
Abstract
The development of novel interfaces between electronic devices and biological systems is a rapidly evolving research area that may lead to new insights into biological behavior, clinical diagnostics and therapeutic treatments. Full electrical integration into biological networks will require bioactuators which can translate an electrical pulse into a specific biochemical signal the system can understand. One approach has been the use of electrostatic fields near the surface of an electrode to locally alter the ionic and electrostatic environment within an ionic double layer. In this scheme, normally active biological macromolecules are suspended in a 'low-salt buffer' that is depleted of necessary ions, such as Mg2+, rendering them inactive. Upon application of an electrical potential these ions are concentrated at the electrode surface, locally activating biomolecular function. An initial demonstration of this method is presented for the dynamic polymerization of actin filaments from electrode surfaces. In principle, electrodes functionalized with different proteins could be individually activated to translate an electrical potential into a specific biochemical signal or behavior.
View details for DOI 10.1039/b607279h
View details for PubMedID 32900143
-
Dynamic control of biomolecular activity using electrical interfaces
SOFT MATTER
2007; 3 (3): 267-274
View details for DOI 10.1039/b607279h
View details for Web of Science ID 000246006700003
- Monochromatic Electron Emission from Negative Electron Affinity Diamondoid Monolayers Science 2007; 315: 1460-1462
-
Probing molecular junctions using surface plasmon resonance spectroscopy
NANO LETTERS
2006; 6 (12): 2797-2803
Abstract
The optical absorption spectra of nanometer-thick organic films and molecular monolayers sandwiched between two metal contacts have been measured successfully using surface plasmon resonance spectroscopy (SPRS). The electric field within metal-insulator (organic)-metal (MIM) cross-bar junctions created by surface plasmon-polaritons excited on the metal surface allows sensitive measurement of molecular optical properties. Specifically, this spectroscopic technique extracts the real and imaginary indices of the organic layer for each wavelength of interest. The SPRS sensitivity was calculated for several device architectures, metals, and layer thicknesses to optimize the organic film absorptivity measurements. Distinct optical absorption features were clearly observed for R6G layers as thin as a single molecular monolayer between two metal electrodes. This method also enables dynamic measurement of molecular conformation inside metallic junctions, as shown by following the optical switching of a thin spiropyran/polymer film upon exposure to UV light. Finally, optical and electrical measurements can be made simultaneously to study the effect of electrical bias and current on molecular conformation, which may have significant impact in areas such as molecular and organic electronics.
View details for DOI 10.1021/nl061893h
View details for Web of Science ID 000242786500029
View details for PubMedID 17163708
-
Soft deposition of large-area metal contacts for molecular electronics
ADVANCED MATERIALS
2006; 18 (12): 1499-?
View details for DOI 10.1002/adma.200600195
View details for Web of Science ID 000238727100002
- Soft Deposition of Large Area Metal Contacts for Molecular Electronics Advanced Materials 2006; 18: 1499-1504
- Probing molecular junctions using surface plasmon resonance spectroscopy Nano Letters 2006; 6: 2797-2803
-
Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics
49th Annual Meeting of the Biophysical-Society
CELL PRESS. 2005: 522A–522A
View details for Web of Science ID 000226378502555
-
Fabrication of conducting Si nanowire arrays
JOURNAL OF APPLIED PHYSICS
2004; 96 (10): 5921-5923
View details for DOI 10.1063/1.1801155
View details for Web of Science ID 000224926000089
-
Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics
BIOSENSORS & BIOELECTRONICS
2004; 20 (3): 509-517
Abstract
We report on a silicon wafer-based device that can be used for recording macroscopic ion channel protein activities across a diverse group of cell-types. Gigaohm seals were achieved for CHO-K1 and RIN m5F cells, and both cell-attached and whole-cell mode configurations were also demonstrated. Two distinct intrinsic potassium ion channels were recorded in whole-cell mode for HIT-T15 and RAW 264.7 cells. Polydimethylsiloxane (PDMS) microfluidics were also coupled with the micromachined silicon chips in order to demonstrate that a single cell could be selectively directed to a micropore, and membrane protein currents could subsequently be recorded. These silicon chip-based devices have significant advantages over traditional micropipette approaches, and may serve as combinatorial tools for investigating membrane biophysics, pharmaceutical screening, and other bio-sensing tasks.
View details for DOI 10.1016/j.bios.2004.02.020
View details for Web of Science ID 000225009000016
View details for PubMedID 15494233
-
Ultrahigh-density nanowire lattices and circuits
SCIENCE
2003; 300 (5616): 112-115
Abstract
We describe a general method for producing ultrahigh-density arrays of aligned metal and semiconductor nanowires and nanowire circuits. The technique is based on translating thin film growth thickness control into planar wire arrays. Nanowires were fabricated with diameters and pitches (center-to-center distances) as small as 8 nanometers and 16 nanometers, respectively. The nanowires have high aspect ratios (up to 10(6)), and the process can be carried out multiple times to produce simple circuits of crossed nanowires with a nanowire junction density in excess of 10(11) per square centimeter. The nanowires can also be used in nanomechanical devices; a high-frequency nanomechanical resonator is demonstrated.
View details for DOI 10.1126/science.1081940
View details for Web of Science ID 000181988900043
View details for PubMedID 12637672
- Ultrahigh-density nanowire lattices and circuits Science 2003; 300: 112-15
- Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores Science 1998; 279: 548-552