Bio


Nicole is a graduate student in the Mordecai Lab (Prof. Erin Mordecai) and the Petrov Lab (Prof. Dmitri Petrov). She received her undergraduate and graduate training in dental surgery at Karolinska Institutet, Sweden. She also studied electrical engineering for a year at the Royal Institute of Technology in Sweden. She then spent a year at Dana-Farber/Harvard Cancer Center working on mathematical modeling of cancer evolution in the Michor Lab (Prof. Franziska Michor). Then, she worked on eco-evolutionary dynamics of infectious disease (i.e., within-host modeling of HIV and antibody co-evolution) in the Koelle Research Group (Prof. Katia Koelle) at Duke University (now Emory University). Nicole is generally interested in population genetics, genomics, disease ecology, and rapid adaptation of pathogens and mammals in wildlife. Her research focuses on public health and conservation of large carnivores.

Honors & Awards


  • Excellence in Teaching, Stanford University (June 2017)

Education & Certifications


  • M.Sc., B.Sc., Karolinska Institutet, Dental Surgery (2012)

All Publications


  • Mosquito and primate ecology predict human risk of yellow fever virus spillover in Brazil. Philosophical transactions of the Royal Society of London. Series B, Biological sciences Childs, M. L., Nova, N., Colvin, J., Mordecai, E. A. 2019; 374 (1782): 20180335

    Abstract

    Many (re)emerging infectious diseases in humans arise from pathogen spillover from wildlife or livestock, and accurately predicting pathogen spillover is an important public health goal. In the Americas, yellow fever in humans primarily occurs following spillover from non-human primates via mosquitoes. Predicting yellow fever spillover can improve public health responses through vector control and mass vaccination. Here, we develop and test a mechanistic model of pathogen spillover to predict human risk for yellow fever in Brazil. This environmental risk model, based on the ecology of mosquito vectors and non-human primate hosts, distinguished municipality-months with yellow fever spillover from 2001 to 2016 with high accuracy (AUC = 0.72). Incorporating hypothesized cyclical dynamics of infected primates improved accuracy (AUC = 0.79). Using boosted regression trees to identify gaps in the mechanistic model, we found that important predictors include current and one-month lagged environmental risk, vaccine coverage, population density, temperature and precipitation. More broadly, we show that for a widespread human viral pathogen, the ecological interactions between environment, vectors, reservoir hosts and humans can predict spillover with surprising accuracy, suggesting the potential to improve preventive action to reduce yellow fever spillover and avert onward epidemics in humans. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.

    View details for DOI 10.1098/rstb.2018.0335

    View details for PubMedID 31401964

  • Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical transactions of the Royal Society of London. Series B, Biological sciences Sokolow, S. H., Nova, N., Pepin, K. M., Peel, A. J., Pulliam, J. R., Manlove, K., Cross, P. C., Becker, D. J., Plowright, R. K., McCallum, H., De Leo, G. A. 2019; 374 (1782): 20180342

    Abstract

    Spillover of a pathogen from a wildlife reservoir into a human or livestock host requires the pathogen to overcome a hierarchical series of barriers. Interventions aimed at one or more of these barriers may be able to prevent the occurrence of spillover. Here, we demonstrate how interventions that target the ecological context in which spillover occurs (i.e. ecological interventions) can complement conventional approaches like vaccination, treatment, disinfection and chemical control. Accelerating spillover owing to environmental change requires effective, affordable, durable and scalable solutions that fully harness the complex processes involved in cross-species pathogen spillover. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.

    View details for DOI 10.1098/rstb.2018.0342

    View details for PubMedID 31401951