Professional Education

  • Doctor of Philosophy, University of Memphis (2018)
  • Master of Science, University of Memphis (2015)
  • Master of Science, Bangalore University (2008)
  • Bachelor of Science, University of Pune (2006)

Stanford Advisors

All Publications

  • Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Science translational medicine Chakraborty, S., Gonzalez, J. C., Sievers, B. L., Mallajosyula, V., Chakraborty, S., Dubey, M., Ashraf, U., Cheng, B. Y., Kathale, N., Tran, K. Q., Scallan, C., Sinnott, A., Cassidy, A., Chen, S. T., Gelbart, T., Gao, F., Golan, Y., Ji, X., Kim-Schulze, S., Prahl, M., Gaw, S. L., Gnjatic, S., Marron, T. U., Merad, M., Arunachalam, P. S., Boyd, S. D., Davis, M. M., Holubar, M., Khosla, C., Maecker, H. T., Maldonado, Y., Mellins, E. D., Nadeau, K. C., Pulendran, B., Singh, U., Subramanian, A., Utz, P. J., Sherwood, R., Zhang, S., Jagannathan, P., Tan, G. S., Wang, T. T. 1800: eabm7853


    A damaging inflammatory response is implicated in the pathogenesis of severe coronavirus disease 2019 (COVID-19), but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated IgG antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were associated with progression from mild to more severe COVID-19. In contrast to the antibody structures that were associated with disease progression, antibodies that were elicited by mRNA SARS-CoV-2 vaccines were instead highly fucosylated and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. To study the biology afucosylated IgG immune complexes, we developed an in vivo model that revealed that human IgG-Fc gamma receptor (FcgammaR) interactions could regulate inflammation in the lung. Afucosylated IgG immune complexes isolated from COVID-19 patients induced inflammatory cytokine production and robust infiltration of the lung by immune cells. By contrast, vaccine-elicited IgG did not promote an inflammatory lung response. Together, these results show that IgG-FcgammaR interactions are able to regulate inflammation in the lung and may define distinct lung activities associated with the IgG that are associated with severe COVID-19 and protection against infection with SARS-CoV-2.

    View details for DOI 10.1126/scitranslmed.abm7853

    View details for PubMedID 35040666

  • Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. The Journal of experimental medicine Wilk, A. J., Lee, M. J., Wei, B., Parks, B., Pi, R., Martinez-Colon, G. J., Ranganath, T., Zhao, N. Q., Taylor, S., Becker, W., Stanford COVID-19 Biobank, Jimenez-Morales, D., Blomkalns, A. L., O'Hara, R., Ashley, E. A., Nadeau, K. C., Yang, S., Holmes, S., Rabinovitch, M., Rogers, A. J., Greenleaf, W. J., Blish, C. A. 2021; 218 (8)


    Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-kappaB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.

    View details for DOI 10.1084/jem.20210582

    View details for PubMedID 34128959

  • SARS-CoV-2 RNAemia predicts clinical deterioration and extrapulmonary complications from COVID-19. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America Ram-Mohan, N. n., Kim, D. n., Zudock, E. J., Hashemi, M. M., Tjandra, K. C., Rogers, A. J., Blish, C. A., Nadeau, K. C., Newberry, J. A., Quinn, J. V., O'Hara, R. n., Ashley, E. n., Nguyen, H. n., Jiang, L. n., Hung, P. n., Blomkalns, A. L., Yang, S. n. 2021


    The determinants of COVID-19 disease severity and extrapulmonary complications (EPCs) are poorly understood. We characterized relationships between SARS-CoV-2 RNAemia and disease severity, clinical deterioration, and specific EPCs.We used quantitative (qPCR) and digital (dPCR) PCR to quantify SARS-CoV-2 RNA from plasma in 191 patients presenting to the Emergency Department (ED) with COVID-19. We recorded patient symptoms, laboratory markers, and clinical outcomes, with a focus on oxygen requirements over time. We collected longitudinal plasma samples from a subset of patients. We characterized the role of RNAemia in predicting clinical severity and EPCs using elastic net regression.23.0% (44/191) of SARS-CoV-2 positive patients had viral RNA detected in plasma by dPCR, compared to 1.4% (2/147) by qPCR. Most patients with serial measurements had undetectable RNAemia within 10 days of symptom onset, reached maximum clinical severity within 16 days, and symptom resolution within 33 days. Initially RNAaemic patients were more likely to manifest severe disease (OR 6.72 [95% CI, 2.45 - 19.79]), worsening of disease severity (OR 2.43 [95% CI, 1.07 - 5.38]), and EPCs (OR 2.81 [95% CI, 1.26 - 6.36]). RNA load correlated with maximum severity (r = 0.47 [95% CI, 0.20 - 0.67]).dPCR is more sensitive than qPCR for the detection of SARS-CoV-2 RNAemia, which is a robust predictor of eventual COVID-19 severity and oxygen requirements, as well as EPCs. Since many COVID-19 therapies are initiated on the basis of oxygen requirements, RNAemia on presentation might serve to direct early initiation of appropriate therapies for the patients most likely to deteriorate.

    View details for DOI 10.1093/cid/ciab394

    View details for PubMedID 33949665

  • Proinflammatory IgG Fc structures in patients with severe COVID-19 Nature Immunology Chakraborty, S., Gonzales, J., Edwards, K., Mallajosyulla, V., Buzzanco, A. S., Sherwood, R., Buffone, C., Kathale, N., Providenza, S., Xie, M. M., Andrews, J. R., Blish, C. A., Singh, U., Dugan, H., Wilson, P. C., Pham, T. D., Boyd, S. D., Nadeau, K. C., Pinsky, B. A., Zhang, S., Memoli, M. J., Taubenberger, J. K., Morales, T., Schapiro, J. M., Tan, G. S., et al 2020
  • mTOR signaling regulates central and peripheral circadian clock function PLOS GENETICS Ramanathan, C., Kathale, N. D., Liu, D., Lee, C., Freeman, D. A., Hogenesch, J. B., Cao, R., Liu, A. C. 2018; 14 (5): e1007369


    The circadian clock coordinates physiology and metabolism. mTOR (mammalian/mechanistic target of rapamycin) is a major intracellular sensor that integrates nutrient and energy status to regulate protein synthesis, metabolism, and cell growth. Previous studies have identified a key role for mTOR in regulating photic entrainment and synchrony of the central circadian clock in the suprachiasmatic nucleus (SCN). Given that mTOR activities exhibit robust circadian oscillations in a variety of tissues and cells including the SCN, here we continued to investigate the role of mTOR in orchestrating autonomous clock functions in central and peripheral circadian oscillators. Using a combination of genetic and pharmacological approaches we show that mTOR regulates intrinsic clock properties including period and amplitude. In peripheral clock models of hepatocytes and adipocytes, mTOR inhibition lengthens period and dampens amplitude, whereas mTOR activation shortens period and augments amplitude. Constitutive activation of mTOR in Tsc2-/-fibroblasts elevates levels of core clock proteins, including CRY1, BMAL1 and CLOCK. Serum stimulation induces CRY1 upregulation in fibroblasts in an mTOR-dependent but Bmal1- and Period-independent manner. Consistent with results from cellular clock models, mTOR perturbation also regulates period and amplitude in the ex vivo SCN and liver clocks. Further, mTOR heterozygous mice show lengthened circadian period of locomotor activity in both constant darkness and constant light. Together, these results support a significant role for mTOR in circadian timekeeping and in linking metabolic states to circadian clock functions.

    View details for DOI 10.1371/journal.pgen.1007369

    View details for Web of Science ID 000434016500019

    View details for PubMedID 29750810

    View details for PubMedCentralID PMC5965903

  • Prevalence of cycling genes and drug targets calls for prospective chronotherapeutics PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Kathale, N. D., Liu, A. C. 2014; 111 (45): 15869–70

    View details for DOI 10.1073/pnas.1418570111

    View details for Web of Science ID 000344526800022

    View details for PubMedID 25368193

    View details for PubMedCentralID PMC4234540

  • Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters JOVE-JOURNAL OF VISUALIZED EXPERIMENTS Ramanathan, C., Khan, S. K., Kathale, N. D., Xu, H., Liu, A. C. 2012


    In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.

    View details for DOI 10.3791/4234

    View details for Web of Science ID 000209225500034

    View details for PubMedID 23052244

    View details for PubMedCentralID PMC3490247