All Publications


  • Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature Minhas, P. S., Latif-Hernandez, A., McReynolds, M. R., Durairaj, A. S., Wang, Q., Rubin, A., Joshi, A. U., He, J. Q., Gauba, E., Liu, L., Wang, C., Linde, M., Sugiura, Y., Moon, P. K., Majeti, R., Suematsu, M., Mochly-Rosen, D., Weissman, I. L., Longo, F. M., Rabinowitz, J. D., Andreasson, K. I. 2021

    Abstract

    Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.

    View details for DOI 10.1038/s41586-020-03160-0

    View details for PubMedID 33473210

  • Cerebral volume and diffusion MRI changes in children with sensorineural hearing loss. NeuroImage. Clinical Moon, P. K., Qian, J. Z., McKenna, E. n., Xi, K. n., Rowe, N. C., Ng, N. N., Zheng, J. n., Tam, L. T., MacEachern, S. J., Ahmad, I. n., Cheng, A. G., Forkert, N. D., Yeom, K. W. 2020; 27: 102328

    Abstract

    Sensorineural hearing loss (SNHL) is the most prevalent congenital sensory deficit in children. Information regarding underlying brain microstructure could offer insight into neural development in deaf children and potentially guide therapies that optimize language development. We sought to quantitatively evaluate MRI-based cerebral volume and gray matter microstructure children with SNHL.We conducted a retrospective study of children with SNHL who obtained brain MRI at 3 T. The study cohort comprised 63 children with congenital SNHL without known focal brain lesion or structural abnormality (33 males; mean age 5.3 years; age range 1 to 11.8 years) and 64 age-matched controls without neurological, developmental, or MRI-based brain macrostructure abnormality. An atlas-based analysis was used to extract quantitative volume and median diffusivity (ADC) in the following brain regions: cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, brain stem, and cerebral white matter. SNHL patients were further stratified by severity scores and hearing loss etiology.Children with SNHL showed higher median ADC of the cortex (p = .019), thalamus (p < .001), caudate (p = .005), and brainstem (p = .003) and smaller brainstem volumes (p = .007) compared to controls. Patients with profound bilateral SNHL did not show any significant differences compared to patients with milder bilateral SNHL, but both cohorts independently had smaller brainstem volumes compared to controls. Children with unilateral SNHL showed greater amygdala volumes compared to controls (p = .021), but no differences were found comparing unilateral SNHL to bilateral SNHL. Based on etiology for SNHL, patients with Pendrin mutations showed higher ADC values in the brainstem (p = .029, respectively); patients with Connexin 26 showed higher ADC values in both the thalamus (p < .001) and brainstem (p < .001) compared to controls.SNHL patients showed significant differences in diffusion and volume in brain subregions, with region-specific findings for patients with Connexin 26 and Pendrin mutations. Future longitudinal studies could examine macro- and microstructure changes in children with SNHL over development and potential predictive role for MRI after interventions including cochlear implant outcome.

    View details for DOI 10.1016/j.nicl.2020.102328

    View details for PubMedID 32622314

  • Association of Pediatric Acute-Onset Neuropsychiatric Syndrome With Microstructural Differences in Brain Regions Detected via Diffusion-Weighted Magnetic Resonance Imaging JAMA Network Open Zheng, J., Frankovich, J., McKenna, E. S., Rowe, N. C., MacEachern, S. J., Ng, N. N., Tam, L. T., Moon, P. K., Gao, J., Thienemann, M., Forkert, N. D., Yeom, K. W. 2020
  • Significance of Nodal Metastasis in Parotid Gland Acinar Cell Carcinoma The Laryngoscope Moon*, P. K., Tusty*, M., Divi, V., Megwalu, U. C. 2020

    View details for DOI 10.1002/lary.28966

  • Revisiting IDO and its value as a predictive marker for anti-PD-1 resistance JOURNAL OF TRANSLATIONAL MEDICINE Moon, P., Tran, S., Minhas, P. 2019; 17
  • Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation NATURE IMMUNOLOGY Minhas, P. S., Liu, L., Moon, P. K., Joshi, A. U., Dove, C., Mhatre, S., Contrepois, K., Wang, Q., Lee, B. A., Coronado, M., Bernstein, D., Snyder, M. P., Migaud, M., Majeti, R., Mochly-Rosen, D., Rabinowitz, J. D., Andreasson, K. I. 2019; 20 (1): 50-+
  • Reexamining IFN-gamma Stimulation of De Novo NAD+ in Monocyte-Derived Macrophages INTERNATIONAL JOURNAL OF TRYPTOPHAN RESEARCH Moon, P., Minhas, P. 2018; 11
  • Reevaluating the role of IDO1: Examining NAD+ metabolism in inflammation Journal of Neuroimmunology Moon, P. K., Minhas, P. S. 2017; 307: 31-32
  • Teasing apart NAD(+) metabolism in inflammation: commentary on Zhou et al. (2016). Br J Pharmacol 173: 2352-2368. British journal of pharmacology Moon, P. n., Minhas, P. n. 2017; 174 (3): 281–83

    View details for PubMedID 28092923

    View details for PubMedCentralID PMC5241388