All Publications


  • Validity of Online Screening for Autism: Crowdsourcing Study Comparing Paid and Unpaid Diagnostic Tasks. Journal of medical Internet research Washington, P., Kalantarian, H., Tariq, Q., Schwartz, J., Dunlap, K., Chrisman, B., Varma, M., Ning, M., Kline, A., Stockham, N., Paskov, K., Voss, C., Haber, N., Wall, D. P. 2019; 21 (5): e13668

    Abstract

    BACKGROUND: Obtaining a diagnosis of neuropsychiatric disorders such as autism requires long waiting times that can exceed a year and can be prohibitively expensive. Crowdsourcing approaches may provide a scalable alternative that can accelerate general access to care and permit underserved populations to obtain an accurate diagnosis.OBJECTIVE: We aimed to perform a series of studies to explore whether paid crowd workers on Amazon Mechanical Turk (AMT) and citizen crowd workers on a public website shared on social media can provide accurate online detection of autism, conducted via crowdsourced ratings of short home video clips.METHODS: Three online studies were performed: (1) a paid crowdsourcing task on AMT (N=54) where crowd workers were asked to classify 10 short video clips of children as "Autism" or "Not autism," (2) a more complex paid crowdsourcing task (N=27) with only those raters who correctly rated ≥8 of the 10 videos during the first study, and (3) a public unpaid study (N=115) identical to the first study.RESULTS: For Study 1, the mean score of the participants who completed all questions was 7.50/10 (SD 1.46). When only analyzing the workers who scored ≥8/10 (n=27/54), there was a weak negative correlation between the time spent rating the videos and the sensitivity (rho=-0.44, P=.02). For Study 2, the mean score of the participants rating new videos was 6.76/10 (SD 0.59). The average deviation between the crowdsourced answers and gold standard ratings provided by two expert clinical research coordinators was 0.56, with an SD of 0.51 (maximum possible SD is 3). All paid crowd workers who scored 8/10 in Study 1 either expressed enjoyment in performing the task in Study 2 or provided no negative comments. For Study 3, the mean score of the participants who completed all questions was 6.67/10 (SD 1.61). There were weak correlations between age and score (r=0.22, P=.014), age and sensitivity (r=-0.19, P=.04), number of family members with autism and sensitivity (r=-0.195, P=.04), and number of family members with autism and precision (r=-0.203, P=.03). A two-tailed t test between the scores of the paid workers in Study 1 and the unpaid workers in Study 3 showed a significant difference (P<.001).CONCLUSIONS: Many paid crowd workers on AMT enjoyed answering screening questions from videos, suggesting higher intrinsic motivation to make quality assessments. Paid crowdsourcing provides promising screening assessments of pediatric autism with an average deviation <20% from professional gold standard raters, which is potentially a clinically informative estimate for parents. Parents of children with autism likely overfit their intuition to their own affected child. This work provides preliminary demographic data on raters who may have higher ability to recognize and measure features of autism across its wide range of phenotypic manifestations.

    View details for DOI 10.2196/13668

    View details for PubMedID 31124463

  • Effect of Wearable Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial JAMA PEDIATRICS Voss, C., Schwartz, J., Daniels, J., Kline, A., Haber, N., Washington, P., Tariq, Q., Robinson, T. N., Desai, M., Phillips, J. M., Feinstein, C., Winograd, T., Wall, D. P. 2019; 173 (5): 446–54
  • Detecting Developmental Delay and Autism Through Machine Learning Models Using Home Videos of Bangladeshi Children: Development and Validation Study JOURNAL OF MEDICAL INTERNET RESEARCH Tariq, Q., Fleming, S., Schwartz, J., Dunlap, K., Corbin, C., Washington, P., Kalantarian, H., Khan, N. Z., Darmstadt, G. L., Wall, D. 2019; 21 (4)

    View details for DOI 10.2196/13822

    View details for Web of Science ID 000465558900001

  • Effect of Wearable Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder: A Randomized Clinical Trial. JAMA pediatrics Voss, C., Schwartz, J., Daniels, J., Kline, A., Haber, N., Washington, P., Tariq, Q., Robinson, T. N., Desai, M., Phillips, J. M., Feinstein, C., Winograd, T., Wall, D. P. 2019

    Abstract

    Importance: Autism behavioral therapy is effective but expensive and difficult to access. While mobile technology-based therapy can alleviate wait-lists and scale for increasing demand, few clinical trials exist to support its use for autism spectrum disorder (ASD) care.Objective: To evaluate the efficacy of Superpower Glass, an artificial intelligence-driven wearable behavioral intervention for improving social outcomes of children with ASD.Design, Setting, and Participants: A randomized clinical trial in which participants received the Superpower Glass intervention plus standard of care applied behavioral analysis therapy and control participants received only applied behavioral analysis therapy. Assessments were completed at the Stanford University Medical School, and enrolled participants used the Superpower Glass intervention in their homes. Children aged 6 to 12 years with a formal ASD diagnosis who were currently receiving applied behavioral analysis therapy were included. Families were recruited between June 2016 and December 2017. The first participant was enrolled on November 1, 2016, and the last appointment was completed on April 11, 2018. Data analysis was conducted between April and October 2018.Interventions: The Superpower Glass intervention, deployed via Google Glass (worn by the child) and a smartphone app, promotes facial engagement and emotion recognition by detecting facial expressions and providing reinforcing social cues. Families were asked to conduct 20-minute sessions at home 4 times per week for 6 weeks.Main Outcomes and Measures: Four socialization measures were assessed using an intention-to-treat analysis with a Bonferroni test correction.Results: Overall, 71 children (63 boys [89%]; mean [SD] age, 8.38 [2.46] years) diagnosed with ASD were enrolled (40 [56.3%] were randomized to treatment, and 31 (43.7%) were randomized to control). Children receiving the intervention showed significant improvements on the Vineland Adaptive Behaviors Scale socialization subscale compared with treatment as usual controls (mean [SD] treatment impact, 4.58 [1.62]; P=.005). Positive mean treatment effects were also found for the other 3 primary measures but not to a significance threshold of P=.0125.Conclusions and Relevance: The observed 4.58-point average gain on the Vineland Adaptive Behaviors Scale socialization subscale is comparable with gains observed with standard of care therapy. To our knowledge, this is the first randomized clinical trial to demonstrate efficacy of a wearable digital intervention to improve social behavior of children with ASD. The intervention reinforces facial engagement and emotion recognition, suggesting either or both could be a mechanism of action driving the observed improvement. This study underscores the potential of digital home therapy to augment the standard of care.Trial Registration: ClinicalTrials.gov identifier: NCT03569176.

    View details for PubMedID 30907929

  • Addendum to the Acknowledgements: Validity of Online Screening for Autism: Crowdsourcing Study Comparing Paid and Unpaid Diagnostic Tasks. Journal of medical Internet research Washington, P., Kalantarian, H., Tariq, Q., Schwartz, J., Dunlap, K., Chrisman, B., Varma, M., Ning, M., Kline, A., Stockham, N., Paskov, K., Voss, C., Haber, N., Wall, D. P. 2019; 21 (6): e14950

    Abstract

    [This corrects the article DOI: 10.2196/13668.].

    View details for DOI 10.2196/14950

    View details for PubMedID 31250828

  • Labeling images with facial emotion and the potential for pediatric healthcare. Artificial intelligence in medicine Kalantarian, H., Jedoui, K., Washington, P., Tariq, Q., Dunlap, K., Schwartz, J., Wall, D. P. 2019; 98: 77–86

    Abstract

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, narrow interests, and deficits in social interaction and communication ability. An increasing emphasis is being placed on the development of innovative digital and mobile systems for their potential in therapeutic applications outside of clinical environments. Due to recent advances in the field of computer vision, various emotion classifiers have been developed, which have potential to play a significant role in mobile screening and therapy for developmental delays that impair emotion recognition and expression. However, these classifiers are trained on datasets of predominantly neurotypical adults and can sometimes fail to generalize to children with autism. The need to improve existing classifiers and develop new systems that overcome these limitations necessitates novel methods to crowdsource labeled emotion data from children. In this paper, we present a mobile charades-style game, Guess What?, from which we derive egocentric video with a high density of varied emotion from a 90-second game session. We then present a framework for semi-automatic labeled frame extraction from these videos using meta information from the game session coupled with classification confidence scores. Results show that 94%, 81%, 92%, and 56% of frames were automatically labeled correctly for categories disgust, neutral, surprise, and scared respectively, though performance for angry and happy did not improve significantly from the baseline.

    View details for DOI 10.1016/j.artmed.2019.06.004

    View details for PubMedID 31521254

  • Detecting Developmental Delay and Autism Through Machine Learning Models Using Home Videos of Bangladeshi Children: Development and Validation Study. Journal of medical Internet research Tariq, Q., Fleming, S. L., Schwartz, J. N., Dunlap, K., Corbin, C., Washington, P., Kalantarian, H., Khan, N. Z., Darmstadt, G. L., Wall, D. P. 2019; 21 (4): e13822

    Abstract

    Autism spectrum disorder (ASD) is currently diagnosed using qualitative methods that measure between 20-100 behaviors, can span multiple appointments with trained clinicians, and take several hours to complete. In our previous work, we demonstrated the efficacy of machine learning classifiers to accelerate the process by collecting home videos of US-based children, identifying a reduced subset of behavioral features that are scored by untrained raters using a machine learning classifier to determine children's "risk scores" for autism. We achieved an accuracy of 92% (95% CI 88%-97%) on US videos using a classifier built on five features.Using videos of Bangladeshi children collected from Dhaka Shishu Children's Hospital, we aim to scale our pipeline to another culture and other developmental delays, including speech and language conditions.Although our previously published and validated pipeline and set of classifiers perform reasonably well on Bangladeshi videos (75% accuracy, 95% CI 71%-78%), this work improves on that accuracy through the development and application of a powerful new technique for adaptive aggregation of crowdsourced labels. We enhance both the utility and performance of our model by building two classification layers: The first layer distinguishes between typical and atypical behavior, and the second layer distinguishes between ASD and non-ASD. In each of the layers, we use a unique rater weighting scheme to aggregate classification scores from different raters based on their expertise. We also determine Shapley values for the most important features in the classifier to understand how the classifiers' process aligns with clinical intuition.Using these techniques, we achieved an accuracy (area under the curve [AUC]) of 76% (SD 3%) and sensitivity of 76% (SD 4%) for identifying atypical children from among developmentally delayed children, and an accuracy (AUC) of 85% (SD 5%) and sensitivity of 76% (SD 6%) for identifying children with ASD from those predicted to have other developmental delays.These results show promise for using a mobile video-based and machine learning-directed approach for early and remote detection of autism in Bangladeshi children. This strategy could provide important resources for developmental health in developing countries with few clinical resources for diagnosis, helping children get access to care at an early age. Future research aimed at extending the application of this approach to identify a range of other conditions and determine the population-level burden of developmental disabilities and impairments will be of high value.

    View details for PubMedID 31017583

  • Mobile detection of autism through machine learning on home video: A development and prospective validation study. PLoS medicine Tariq, Q., Daniels, J., Schwartz, J. N., Washington, P., Kalantarian, H., Wall, D. P. 2018; 15 (11): e1002705

    Abstract

    BACKGROUND: The standard approaches to diagnosing autism spectrum disorder (ASD) evaluate between 20 and 100 behaviors and take several hours to complete. This has in part contributed to long wait times for a diagnosis and subsequent delays in access to therapy. We hypothesize that the use of machine learning analysis on home video can speed the diagnosis without compromising accuracy. We have analyzed item-level records from 2 standard diagnostic instruments to construct machine learning classifiers optimized for sparsity, interpretability, and accuracy. In the present study, we prospectively test whether the features from these optimized models can be extracted by blinded nonexpert raters from 3-minute home videos of children with and without ASD to arrive at a rapid and accurate machine learning autism classification.METHODS AND FINDINGS: We created a mobile web portal for video raters to assess 30 behavioral features (e.g., eye contact, social smile) that are used by 8 independent machine learning models for identifying ASD, each with >94% accuracy in cross-validation testing and subsequent independent validation from previous work. We then collected 116 short home videos of children with autism (mean age = 4 years 10 months, SD = 2 years 3 months) and 46 videos of typically developing children (mean age = 2 years 11 months, SD = 1 year 2 months). Three raters blind to the diagnosis independently measured each of the 30 features from the 8 models, with a median time to completion of 4 minutes. Although several models (consisting of alternating decision trees, support vector machine [SVM], logistic regression (LR), radial kernel, and linear SVM) performed well, a sparse 5-feature LR classifier (LR5) yielded the highest accuracy (area under the curve [AUC]: 92% [95% CI 88%-97%]) across all ages tested. We used a prospectively collected independent validation set of 66 videos (33 ASD and 33 non-ASD) and 3 independent rater measurements to validate the outcome, achieving lower but comparable accuracy (AUC: 89% [95% CI 81%-95%]). Finally, we applied LR to the 162-video-feature matrix to construct an 8-feature model, which achieved 0.93 AUC (95% CI 0.90-0.97) on the held-out test set and 0.86 on the validation set of 66 videos. Validation on children with an existing diagnosis limited the ability to generalize the performance to undiagnosed populations.CONCLUSIONS: These results support the hypothesis that feature tagging of home videos for machine learning classification of autism can yield accurate outcomes in short time frames, using mobile devices. Further work will be needed to confirm that this approach can accelerate autism diagnosis at scale.

    View details for PubMedID 30481180