Professional Education

  • Doctor of Philosophy, Peking University (2014)
  • Bachelor of Science, Peking University (2009)

Stanford Advisors

  • Jin Li, Postdoctoral Faculty Sponsor

All Publications

  • GLOBAL LANDSCAPE AND GENETIC REGULATION OF RNA EDITING IN CORTICAL SAMPLES FROM INDIVIDUALS WITH SCHIZOPHRENIA Breen, M., Dobbyn, A., Li, Q., Roussos, P., Hoffman, G., Stahl, E., Chess, A., Li, J., Devlin, B., Buxbaum, J., CommonMind Consortium ELSEVIER. 2019: S112–S113
  • Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nature biotechnology Merkle, T., Merz, S., Reautschnig, P., Blaha, A., Li, Q., Vogel, P., Wettengel, J., Li, J. B., Stafforst, T. 2019


    Site-directed RNA editing might provide a safer or more effective alternative to genome editing in certain clinical scenarios. Until now, RNA editing has relied on overexpression of exogenous RNA editing enzymes or of endogenous human ADAR (adenosine deaminase acting on RNA) enzymes. Here we describe the engineering of chemically optimized antisense oligonucleotides that recruit endogenous human ADARs to edit endogenous transcripts in a simple and programmable way, an approach we call RESTORE (recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing). We observed almost no off-target editing, and natural editing homeostasis was not perturbed. We successfully applied RESTORE to a panel of standard human cell lines and human primary cells and demonstrated repair of the clinically relevant PiZZ mutation, which causes alpha1-antitrypsin deficiency, and editing of phosphotyrosine 701 in STAT1, the activity switch of the signaling factor. RESTORE requires only the administration of an oligonucleotide, circumvents ectopic expression of proteins, and represents an attractive approach for drug development.

    View details for PubMedID 30692694

  • Illuminating spatial A-to-I RNA editing signatures within the Drosophila brain. Proceedings of the National Academy of Sciences of the United States of America Sapiro, A. L., Shmueli, A., Henry, G. L., Li, Q., Shalit, T., Yaron, O., Paas, Y., Billy Li, J., Shohat-Ophir, G. 2019


    Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the Drosophila brain and show that different neuronal populations possess distinct RNA editing signatures. After purifying and sequencing RNA from genetically marked groups of neuronal nuclei, we identified a large number of editing sites and compared editing levels in hundreds of transcripts across nine functionally different neuronal populations. We found distinct editing repertoires for each population, including sites in repeat regions of the transcriptome and differential editing in highly conserved and likely functional regions of transcripts that encode essential neuronal genes. These changes are site-specific and not driven by changes in Adar expression, suggesting a complex, targeted regulation of editing levels in key transcripts. This fine-tuning of the transcriptome between different neurons by RNA editing may account for functional differences between distinct populations in the brain.

    View details for PubMedID 30659150

  • Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nature neuroscience Breen, M. S., Dobbyn, A., Li, Q., Roussos, P., Hoffman, G. E., Stahl, E., Chess, A., Sklar, P., Li, J. B., Devlin, B., Buxbaum, J. D. 2019; 22 (9): 1402–12


    RNA editing critically regulates neurodevelopment and normal neuronal function. The global landscape of RNA editing was surveyed across 364 schizophrenia cases and 383 control postmortem brain samples from the CommonMind Consortium, comprising two regions: dorsolateral prefrontal cortex and anterior cingulate cortex. In schizophrenia, RNA editing sites in genes encoding AMPA-type glutamate receptors and postsynaptic density proteins were less edited, whereas those encoding translation initiation machinery were edited more. These sites replicate between brain regions, map to 3'-untranslated regions and intronic regions, share common sequence motifs and overlap with binding sites for RNA-binding proteins crucial for neurodevelopment. These findings cross-validate in hundreds of non-overlapping dorsolateral prefrontal cortex samples. Furthermore, ~30% of RNA editing sites associate with cis-regulatory variants (editing quantitative trait loci or edQTLs). Fine-mapping edQTLs with schizophrenia risk loci revealed co-localization of eleven edQTLs with six loci. The findings demonstrate widespread altered RNA editing in schizophrenia and its genetic regulation, and suggest a causal and mechanistic role of RNA editing in schizophrenia neuropathology.

    View details for DOI 10.1038/s41593-019-0463-7

    View details for PubMedID 31455887

  • The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival. Cell Maeder, C. I., Kim, J., Liang, X., Kaganovsky, K., Shen, A., Li, Q., Li, Z., Wang, S., Xu, X. Z., Li, J. B., Xiang, Y. K., Ding, J. B., Shen, K. 2018


    Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C.elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.

    View details for PubMedID 30146163

  • Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs NATURE METHODS Vogel, P., Moschref, M., Li, Q., Merkle, T., Selvasaravanan, K. D., Li, J., Stafforst, T. 2018; 15 (7): 535-+


    Molecular tools that target RNA at specific sites allow recoding of RNA information and processing. SNAP-tagged deaminases guided by a chemically stabilized guide RNA can edit targeted adenosine to inosine in several endogenous transcripts simultaneously, with high efficiency (up to 90%), high potency, sufficient editing duration, and high precision. We used adenosine deaminases acting on RNA (ADARs) fused to SNAP-tag for the efficient and concurrent editing of two disease-relevant signaling transcripts, KRAS and STAT1. We also demonstrate improved performance compared with that of the recently described Cas13b-ADAR.

    View details for PubMedID 29967493

  • DDX6 Represses Aberrant Activation of Interferon-Stimulated Genes. Cell reports Lumb, J. H., Li, Q., Popov, L. M., Ding, S., Keith, M. T., Merrill, B. D., Greenberg, H. B., Li, J. B., Carette, J. E. 2017; 20 (4): 819–31


    The innate immune system tightly regulates activation of interferon-stimulated genes (ISGs) to avoid inappropriate expression. Pathological ISG activation resulting from aberrant nucleic acid metabolism has been implicated in autoimmune disease; however, the mechanisms governing ISG suppression are unknown. Through a genome-wide genetic screen, we identified DEAD-box helicase 6 (DDX6) as a suppressor of ISGs. Genetic ablation of DDX6 induced global upregulation of ISGs and other immune genes. ISG upregulation proved cell intrinsic, imposing an antiviral state and making cells refractory to divergent families of RNA viruses. Epistatic analysis revealed that ISG activation could not be overcome by deletion of canonical RNA sensors. However, DDX6 deficiency was suppressed by disrupting LSM1, a core component of mRNA degradation machinery, suggesting that dysregulation of RNA processing underlies ISG activation in the DDX6 mutant. DDX6 is distinct among DExD/H helicases that regulate the antiviral response in its singular ability to negatively regulate immunity.

    View details for PubMedID 28746868

    View details for PubMedCentralID PMC5551412

  • Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome biology Heraud-Farlow, J. E., Chalk, A. M., Linder, S. E., Li, Q., Taylor, S., White, J. M., Pang, L., Liddicoat, B. J., Gupte, A., Li, J. B., Walkley, C. R. 2017; 18 (1): 166


    Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated. ADAR1 has been proposed to have editing-dependent and editing-independent functions. The relative contribution of these in vivo has not been clearly defined. A critical function of ADAR1 is editing of endogenous RNA to prevent activation of the dsRNA sensor MDA5 (Ifih1). Outside of this, how ADAR1 editing contributes to normal development and homeostasis is uncertain.We describe the consequences of ADAR1 editing deficiency on murine homeostasis. Adar1 E861A/E861A Ifih1 -/- mice are strikingly normal, including their lifespan. There is a mild, non-pathogenic innate immune activation signature in the Adar1 E861A/E861A Ifih1 -/- mice. Assessing A-to-I editing across adult tissues demonstrates that outside of the brain, ADAR1 performs the majority of editing and that ADAR2 cannot compensate in its absence. Direct comparison of the Adar1 -/- and Adar1 E861A/E861A alleles demonstrates a high degree of concordance on both Ifih1 +/+ and Ifih1 -/- backgrounds, suggesting no substantial contribution from ADAR1 editing-independent functions.These analyses demonstrate that the lifetime absence of ADAR1-editing is well tolerated in the absence of MDA5. We conclude that protein recoding arising from ADAR1-mediated editing is not essential for organismal homeostasis. Additionally, the phenotypes associated with loss of ADAR1 are the result of RNA editing and MDA5-dependent functions.

    View details for PubMedID 28874170

    View details for PubMedCentralID PMC5585977

  • Dynamic landscape and regulation of RNA editing in mammals. Nature Tan, M. H., Li, Q., Shanmugam, R., Piskol, R., Kohler, J., Young, A. N., Liu, K. I., Zhang, R., Ramaswami, G., Ariyoshi, K., Gupte, A., Keegan, L. P., George, C. X., Ramu, A., Huang, N., Pollina, E. A., Leeman, D. S., Rustighi, A., Goh, Y. P., Chawla, A., Del Sal, G., Peltz, G., Brunet, A., Conrad, D. F., Samuel, C. E., O'Connell, M. A., Walkley, C. R., Nishikura, K., Li, J. B. 2017; 550 (7675): 249–54


    Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.

    View details for PubMedID 29022589

  • Landscape of X chromosome inactivation across human tissues. Nature Tukiainen, T., Villani, A. C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes, A., Lappalainen, T., Regev, A., Ardlie, K. G., Hacohen, N., MacArthur, D. G. 2017; 550 (7675): 244–48


    X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.

    View details for PubMedID 29022598

  • Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nature genetics 2017; 49 (12): 1664–70


    Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variant's cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.

    View details for DOI 10.1038/ng.3969

    View details for PubMedID 29019975

  • The impact of rare variation on gene expression across tissues. Nature Li, X., Kim, Y., Tsang, E. K., Davis, J. R., Damani, F. N., Chiang, C., Hess, G. T., Zappala, Z., Strober, B. J., Scott, A. J., Li, A., Ganna, A., Bassik, M. C., Merker, J. D., Hall, I. M., Battle, A., Montgomery, S. B. 2017; 550 (7675): 239–43


    Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.

    View details for PubMedID 29022581

  • Genetic effects on gene expression across human tissues. Nature Battle, A., Brown, C. D., Engelhardt, B. E., Montgomery, S. B. 2017; 550 (7675): 204–13


    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

    View details for PubMedID 29022597

  • ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia. Cancer discovery Zhu, L., Li, Q., Wong, S. H., Huang, M., Klein, B. J., Shen, J., Ikenouye, L., Onishi, M., Schneidawind, D., Buechele, C., Hansen, L., Duque-Afonso, J., Zhu, F., Martin, G. M., Gozani, O., Majeti, R., Kutateladze, T. G., Cleary, M. L. 2016; 6 (7): 770-783


    Numerous studies in multiple systems support that histone H3 lysine 36 dimethylation (H3K36me2) is associated with transcriptional activation; however, the underlying mechanisms are not well defined. Here, we show that the H3K36me2 chromatin mark written by the ASH1L histone methyltransferase is preferentially bound in vivo by LEDGF, a mixed-lineage leukemia (MLL)-associated protein that colocalizes with MLL, ASH1L, and H3K36me2 on chromatin genome wide. Furthermore, ASH1L facilitates recruitment of LEDGF and wild-type MLL proteins to chromatin at key leukemia target genes and is a crucial regulator of MLL-dependent transcription and leukemic transformation. Conversely, KDM2A, an H3K36me2 demethylase and Polycomb group silencing protein, antagonizes MLL-associated leukemogenesis. Our studies are the first to provide a basic mechanistic insight into epigenetic interactions wherein placement, interpretation, and removal of H3K36me2 contribute to the regulation of gene expression and MLL leukemia, and suggest ASH1L as a novel target for therapeutic intervention.Epigenetic regulators play vital roles in cancer pathogenesis and represent a new frontier in therapeutic targeting. Our studies provide basic mechanistic insight into the role of H3K36me2 in transcription activation and MLL leukemia pathogenesis and implicate ASH1L histone methyltransferase as a promising target for novel molecular therapy. Cancer Discov; 6(7); 770-83. ©2016 AACR.See related commentary by Balbach and Orkin, p. 700This article is highlighted in the In This Issue feature, p. 681.

    View details for DOI 10.1158/2159-8290.CD-16-0058

    View details for PubMedID 27154821

    View details for PubMedCentralID PMC4930721

  • XenMine: A genomic interaction tool for the Xenopus community. Developmental biology Reid, C. D., Karra, K., Chang, J., Piskol, R., Li, Q., Li, J. B., Cherry, J. M., Baker, J. C. 2016


    The Xenopus community has embraced recent advances in sequencing technology, resulting in the accumulation of numerous RNA-Seq and ChIP-Seq datasets. However, easily accessing and comparing datasets generated by multiple laboratories is challenging. Thus, we have created a central space to view, search and analyze data, providing essential information on gene expression changes and regulatory elements present in the genome. XenMine ( is a user-friendly website containing published genomic datasets from both Xenopus tropicalis and Xenopus laevis. We have established an analysis pipeline where all published datasets are uniformly processed with the latest genome releases. Information from these datasets can be extracted and compared using an array of pre-built or custom templates. With these search tools, users can easily extract sequences for all putative regulatory domains surrounding a gene of interest, identify the expression values of a gene of interest over developmental time, and analyze lists of genes for gene ontology terms and publications. Additionally, XenMine hosts an in-house genome browser that allows users to visualize all available ChIP-Seq data, extract specifically marked sequences, and aid in identifying important regulatory elements within the genome. Altogether, XenMine is an excellent tool for visualizing, accessing and querying analyzed datasets rapidly and efficiently.

    View details for DOI 10.1016/j.ydbio.2016.02.034

    View details for PubMedID 27157655