Professional Education


  • Doctor of Philosophy, University of Florida (2016)
  • Bachelor of Science, Washington and Lee University (2007)

Stanford Advisors


Lab Affiliations


All Publications


  • SARS-CoV-2 infects human pancreatic beta cells and elicits beta cell impairment. Cell metabolism Wu, C., Lidsky, P. V., Xiao, Y., Lee, I. T., Cheng, R., Nakayama, T., Jiang, S., Demeter, J., Bevacqua, R. J., Chang, C. A., Whitener, R. L., Stalder, A. K., Zhu, B., Chen, H., Goltsev, Y., Tzankov, A., Nayak, J. V., Nolan, G. P., Matter, M. S., Andino, R., Jackson, P. K. 2021

    Abstract

    Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic beta cells can be infected by SARS-CoV-2 and cause beta cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in beta cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic beta cells in patients who succumbed to COVID-19 and selectively infects human islet beta cells invitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces beta cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic beta cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce beta cell killing.

    View details for DOI 10.1016/j.cmet.2021.05.013

    View details for PubMedID 34081912

  • SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic β cells. Genes & development Bevacqua, R. J., Lam, J. Y., Peiris, H. n., Whitener, R. L., Kim, S. n., Gu, X. n., Friedlander, M. S., Kim, S. K. 2021

    Abstract

    The physiological functions of many vital tissues and organs continue to mature after birth, but the genetic mechanisms governing this postnatal maturation remain an unsolved mystery. Human pancreatic β cells produce and secrete insulin in response to physiological cues like glucose, and these hallmark functions improve in the years after birth. This coincides with expression of the transcription factors SIX2 and SIX3, whose functions in native human β cells remain unknown. Here, we show that shRNA-mediated SIX2 or SIX3 suppression in human pancreatic adult islets impairs insulin secretion. However, transcriptome studies revealed that SIX2 and SIX3 regulate distinct targets. Loss of SIX2 markedly impaired expression of genes governing β-cell insulin processing and output, glucose sensing, and electrophysiology, while SIX3 loss led to inappropriate expression of genes normally expressed in fetal β cells, adult α cells, and other non-β cells. Chromatin accessibility studies identified genes directly regulated by SIX2. Moreover, β cells from diabetic humans with impaired insulin secretion also had reduced SIX2 transcript levels. Revealing how SIX2 and SIX3 govern functional maturation and maintain developmental fate in native human β cells should advance β-cell replacement and other therapeutic strategies for diabetes.

    View details for DOI 10.1101/gad.342378.120

    View details for PubMedID 33446570

  • Molecular and genetic regulation of pig pancreatic islet cell development. Development (Cambridge, England) Kim, S. n., Whitener, R. L., Peiris, H. n., Gu, X. n., Chang, C. A., Lam, J. Y., Camunas-Soler, J. n., Park, I. n., Bevacqua, R. J., Tellez, K. n., Quake, S. R., Lakey, J. R., Bottino, R. n., Ross, P. J., Kim, S. K. 2020

    Abstract

    Reliance on rodents for understanding pancreatic genetics, development and islet function could limit progress in developing interventions for human diseases like diabetes mellitus. Similarities of pancreas morphology and function suggest that porcine and human pancreas developmental biology may have useful homologies. However, little is known about pig pancreas development. To fill this knowledge gap, we investigated fetal and neonatal pig pancreas at multiple, crucial developmental stages using modern experimental approaches. Purification of islet β-, α- and δ-cells followed by transcriptome analysis (RNA-Seq) and immunohistology identified cell- and stage-specific regulation, and revealed that pig and human islet cells share characteristic features not observed in mice. Morphometric analysis also revealed endocrine cell allocation and architectural similarities between pig and human islets. Our analysis unveiled scores of signaling pathways linked to native islet β-cell functional maturation, including evidence of fetal α-cell GLP-1 production and signaling to β-cells. Thus, the findings and resources detailed here show how pig pancreatic islet studies complement other systems for understanding the developmental programs that generate functional islet cells, and that are relevant to human pancreatic diseases.

    View details for DOI 10.1242/dev.186213

    View details for PubMedID 34004773