Professional Education

  • Master of Science, Georgetown University (2009)
  • Bachelor of Science, University of California Los Angeles (2008)
  • Doctor of Philosophy, Georgetown University (2013)

Stanford Advisors

  • Jun Ding, Postdoctoral Faculty Sponsor

All Publications

  • Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease NATURE NEUROSCIENCE Guo, L., Xiong, H., Kim, J., Wu, Y., Lalchandani, R. R., Cui, Y., Shu, Y., Xu, T., Ding, J. B. 2015; 18 (9): 1299-?

    View details for DOI 10.1038/nn.4082

    View details for Web of Science ID 000360292600020

  • Input- and Cell-Type-Specific Endocannabinoid-Dependent LTD in the Striatum CELL REPORTS Wu, Y., Kim, J., Tawfik, V. L., Lalchandani, R. R., Scherrer, G., Ding, J. B. 2015; 10 (1): 75-87


    Changes in basal ganglia plasticity at the corticostriatal and thalamostriatal levels are required for motor learning. Endocannabinoid-dependent long-term depression (eCB-LTD) is known to be a dominant form of synaptic plasticity expressed at these glutamatergic inputs; however, whether eCB-LTD can be induced at all inputs on all striatal neurons is still debatable. Using region-specific Cre mouse lines combined with optogenetic techniques, we directly investigated and distinguished between corticostriatal and thalamostriatal projections. We found that eCB-LTD was successfully induced at corticostriatal synapses, independent of postsynaptic striatal spiny projection neuron (SPN) subtype. Conversely, eCB-LTD was only nominally present at thalamostriatal synapses. This dichotomy was attributable to the minimal expression of cannabinoid type 1 (CB1) receptors on thalamostriatal terminals. Furthermore, coactivation of dopamine receptors on SPNs during LTD induction re-established SPN-subtype-dependent eCB-LTD. Altogether, our findings lay the groundwork for understanding corticostriatal and thalamostriatal synaptic plasticity and for striatal eCB-LTD in motor learning.

    View details for DOI 10.1016/j.celrep.2014.12.005

    View details for Web of Science ID 000347465600008

    View details for PubMedID 25543142