Professional Education


  • MD, Royal College of Surgeons in Ireland, Medicine (2010)
  • MSc, King's College London, Clinical Neuroscience (2014)

Stanford Advisors


All Publications


  • Automatic Removal of False Connections in Diffusion MRI Tractography Using Topology-Informed Pruning (TIP). Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics Yeh, F., Panesar, S., Barrios, J., Fernandes, D., Abhinav, K., Meola, A., Fernandez-Miranda, J. C. 2018

    Abstract

    Diffusion MRI fiber tracking provides a non-invasive method for mapping the trajectories of human brain connections, but its false connection problem has been a major challenge. This study introduces topology-informed pruning (TIP), a method that automatically identifies singular tracts and eliminates them to improve the tracking accuracy. The accuracy of the tractography with and without TIP was evaluated by a team of 6 neuroanatomists in a blinded setting to examine whether TIP could improve the accuracy. The results showed that TIP improved the tracking accuracy by 11.93% in the single-shell scheme and by 3.47% in the grid scheme. The improvement is significantly different from a random pruning (p value <0.001). The diagnostic agreement between TIP and neuroanatomists was comparable to the agreement between neuroanatomists. The proposed TIP algorithm can be used to automatically clean-up noisy fibers in deterministic tractography, with a potential to confirm the existence of a fiber connection in basic neuroanatomical studies or clinical neurosurgical planning.

    View details for DOI 10.1007/s13311-018-0663-y

    View details for PubMedID 30218214

  • A Quantitative Tractography Study Into the Connectivity, Segmentation and Laterality of the Human Inferior Longitudinal Fasciculus FRONTIERS IN NEUROANATOMY Panesar, S. S., Yeh, F., Jacquesson, T., Hula, W., Fernandez-Miranda, J. C. 2018; 12: 47

    Abstract

    The human inferior longitudinal fasciculus (ILF) is a ventral, temporo-occipital association tract. Though described in early neuroanatomical works, its existence was later questioned. Application of in vivo tractography to the neuroanatomical study of the ILF has generally confirmed its existence, however, consensus is lacking regarding its subdivision, laterality and connectivity. Further, there is a paucity of detailed neuroanatomic data pertaining to the exact anatomy of the ILF. Generalized Q-Sampling imaging (GQI) is a non-tensor tractographic modality permitting high resolution imaging of white-matter structures. As it is a non-tensor modality, it permits visualization of crossing fibers and accurate delineation of close-proximity fiber-systems. We applied deterministic GQI tractography to data from 30 healthy subjects and a large-volume, averaged diffusion atlas, to delineate ILF anatomy. Post-mortem white matter dissection was also carried out in three cadaveric specimens for further validation. The ILF was found in all 60 hemispheres. At its occipital extremity, ILF fascicles demonstrated a bifurcated, ventral-dorsal morphological termination pattern, which we used to further subdivide the bundle for detailed analysis. These divisions were consistent across the subject set and within the atlas. We applied quantitative techniques to study connectivity strength of the ILF at its anterior and posterior extremities. Overall, both morphological divisions, and the un-separated ILF, demonstrated strong leftward-lateralized connectivity patterns. Leftward-lateralization was also found for ILF volumes across the subject set. Due to connective and volumetric leftward-dominance and ventral location, we postulate the ILFs role in the semantic system. Further, our results are in agreement with functional and lesion-based postulations pertaining to the ILFs role in facial recognition.

    View details for DOI 10.3389/fnana.2018.00047

    View details for Web of Science ID 000434157500001

    View details for PubMedID 29922132

    View details for PubMedCentralID PMC5996125

  • Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage Yeh, F., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J. C., Vettel, J. M., Verstynen, T. 2018; 178: 57–68

    Abstract

    A comprehensive map of the structural connectome in the human brain has been a coveted resource for understanding macroscopic brain networks. Here we report an expert-vetted, population-averaged atlas of the structural connectome derived from diffusion MRI data (N = 842). This was achieved by creating a high-resolution template of diffusion patterns averaged across individual subjects and using tractography to generate 550,000 trajectories of representative white matter fascicles annotated by 80 anatomical labels. The trajectories were subsequently clustered and labeled by a team of experienced neuroanatomists in order to conform to prior neuroanatomical knowledge. A multi-level network topology was then described using whole-brain connectograms, with subdivisions of the association pathways showing small-worldness in intra-hemisphere connections, projection pathways showing hub structures at thalamus, putamen, and brainstem, and commissural pathways showing bridges connecting cerebral hemispheres to provide global efficiency. This atlas of the structural connectome provides representative organization of human brain white matter, complementary to traditional histologically-derived and voxel-based white matter atlases, allowing for better modeling and simulation of brain connectivity for future connectome studies.

    View details for DOI 10.1016/j.neuroimage.2018.05.027

    View details for PubMedID 29758339

  • Feasibility of Clinician-Facilitated Three-Dimensional Printing of Synthetic Cranioplasty Flaps WORLD NEUROSURGERY Panesar, S. S., Belo, J. A., D'Souza, R. N. 2018; 113: E628–E637

    Abstract

    Integration of three-dimensional (3D) printing and stereolithography into clinical practice is in its nascence, and concepts may be esoteric to the practicing neurosurgeon. Currently, creation of 3D printed implants involves recruitment of offsite third parties. We explored a range of 3D scanning and stereolithographic techniques to create patient-specific synthetic implants using an onsite, clinician-facilitated approach.We simulated bilateral craniectomies in a single cadaveric specimen. We devised 3 methods of creating stereolithographically viable virtual models from removed bone. First, we used preoperative and postoperative computed tomography scanner-derived bony window models from which the flap was extracted. Second, we used an entry-level 3D light scanner to scan and render models of the individual bone pieces. Third, we used an arm-mounted, 3D laser scanner to create virtual models using a real-time approach.Flaps were printed from the computed tomography scanner and laser scanner models only in a ultraviolet-cured polymer. The light scanner did not produce suitable virtual models for printing. The computed tomography scanner-derived models required extensive postfabrication modification to fit the existing defects. The laser scanner models assumed good fit within the defects without any modification.The methods presented varying levels of complexity in acquisition and model rendering. Each technique required hardware at varying in price points from $0 to approximately $100,000. The laser scanner models produced the best quality parts, which had near-perfect fit with the original defects. Potential neurosurgical applications of this technology are discussed.

    View details for DOI 10.1016/j.wneu.2018.02.111

    View details for Web of Science ID 000432942700077

    View details for PubMedID 29486312

  • Generalized q-sampling imaging fiber tractography reveals displacement and infiltration of fiber tracts in low-grade gliomas NEURORADIOLOGY Celtikci, P., Fernandes-Cabral, D. T., Yeh, F., Panesar, S. S., Fernandez-Miranda, J. C. 2018; 60 (3): 267–80

    Abstract

    Low-grade gliomas (LGGs) are slow growing brain tumors that often cause displacement and/or infiltration of the surrounding white matter pathways. Differentiation between infiltration and displacement of fiber tracts remains a challenge. Currently, there is no reliable noninvasive imaging method capable of revealing such white matter alteration patterns. We employed quantitative anisotropy (QA) derived from generalized q-sampling imaging (GQI) to identify patterns of fiber tract alterations by LGGs.Sixteen patients with a neuropathological diagnosis of LGG (WHO grade II) were enrolled. Peritumoral fiber tracts underwent qualitative and quantitative evaluation. Contralateral hemisphere counterparts were used for comparison. Tracts were qualitatively classified as unaffected, displaced, infiltrated or displaced, and infiltrated at once. The average QA of whole tract (W), peritumoral tract segment (S), and their ratio (S/W) were obtained and compared to the healthy side for quantitative evaluation.Qualitative analysis revealed 9 (13.8%) unaffected, 24 (36.9%) displaced, 13 (20%) infiltrated, and 19 (29.2%) tracts with a combination of displacement and infiltration. There were no disrupted tracts. There was a significant increase in S/W ratio among displaced tracts in the pre-operative scans in comparison with the contralateral side. QA values of peritumoral tract segments (S) were significantly lower in infiltrated tracts.WHO grade II LGGs might displace, infiltrate, or cause a combination of displacement and infiltration of WM tracts. QA derived from GQI provides valuable information that helps to differentiate infiltration from displacement. Anisotropy changes correlate with qualitative alterations, which may serve as a potential biomarker of fiber tract integrity.

    View details for DOI 10.1007/s00234-018-1985-5

    View details for Web of Science ID 000424274400005

    View details for PubMedID 29372286

  • Surgery in space. The British journal of surgery Panesar, S. S., Ashkan, K. 2018

    Abstract

    There has been renewed public interest in manned space exploration owing to novel initiatives by private and governmental bodies. Long-term goals include manned missions to, and potential colonization of, nearby planets. Travel distances and mission length required for these would render Earth-based treatment and telemedical solutions unfeasible. These issues present an anticipatory challenge to planners, and novel or adaptive medical technologies must therefore be devised to diagnose and treat the range of medical issues that future space travellers will encounter.The aim was to conduct a search of the literature pertaining to human physiology, pathology, trauma and surgery in space.Known physiological alterations include fluid redistribution, cardiovascular changes, bone and muscle atrophy, and effects of ionizing radiation. Potential pathological mechanisms identified include trauma, cancer and common surgical conditions, such as appendicitis.Potential surgical treatment modalities must consist of self-sufficient and adaptive technology, especially in the face of uncertain pathophysiological mechanisms and logistical concerns.

    View details for DOI 10.1002/bjs.10908

    View details for PubMedID 29923181

  • A diffusion spectrum imaging-based tractographic study into the anatomical subdivision and cortical connectivity of the ventral external capsule: uncinate and inferior fronto-occipital fascicles NEURORADIOLOGY Panesar, S. S., Yeh, F., Deibert, C. P., Fernandes-Cabral, D., Rowthu, V., Celtikci, P., Celtikci, E., Hula, W. D., Pathak, S., Fernandez-Miranda, J. C. 2017; 59 (10): 971–87

    Abstract

    The inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus (UF) are major fronto-capsular white matter pathways. IFOF connects frontal areas of the brain to parieto-occipital areas. UF connects ventral frontal areas to anterior temporal areas. Both fascicles are thought to subserve higher language and emotion roles. Controversy pertaining to their connectivity and subdivision persists in the literature, however.High-definition fiber tractography (HDFT) is a non-tensor tractographic method using diffusion spectrum imaging data. Its major advantage over tensor-based tractography is its ability to trace crossing fiber pathways. We used HDFT to investigate subdivisions and cortical connectivity of IFOF and UF in 30 single subjects and in an atlas comprising averaged data from 842 individuals. A per-subject aligned, atlas-based approach was employed to seed fiber tracts and to study cortical terminations.For IFOF, we observed a tripartite arrangement corresponding to ventrolateral, ventromedial, and dorsomedial frontal origins. IFOF volume was not significantly lateralized to either hemisphere. UF fibers arose from ventromedial and ventrolateral frontal areas on the left and from ventromedial frontal areas on the right. UF volume was significantly lateralized to the left hemisphere. The data from the averaged atlas was largely in concordance with subject-specific findings. IFOF connected to parietal, occipital, but not temporal, areas. UF connected predominantly to temporal poles.Both IFOF and UF possess subdivided arrangements according to their frontal origin. Our connectivity results indicate the multifunctional involvement of IFOF and UF in language tasks. We discuss our findings in context of the tractographic literature.

    View details for DOI 10.1007/s00234-017-1874-3

    View details for Web of Science ID 000410694400005

    View details for PubMedID 28721443

  • Surgical Management of Vertex Epidural Hematoma: Technical Case Report and Literature Review WORLD NEUROSURGERY Fernandes-Cabral, D. T., Kooshkabadi, A., Panesar, S. S., Celtikci, E., Borghei-Razavi, H., Celtikci, P., Fernandez-Miranda, J. C. 2017; 103: 475–83

    Abstract

    Vertex epidural hematoma (VEH) is an uncommon presentation of extra-axial hematomas. It can represent a surgical dilemma regarding when and how to operate, particularly considering the potential implication of the superior sagittal sinus (SSS).Here, we illustrate the surgical technique for VEH as well as a review of the existing literature.A 60-year-old man sustained a ground-level fall resulting in complete diastasis of the sagittal suture with underlying large VEH causing significant mass effect on the SSS and bihemispheric convexities. Twenty-four hours later, the patient deteriorated, with decreased level of alertness and worsening asymmetric paresis on his lower extremities. He subsequently underwent surgical evacuation of the hematoma, decompression of the SSS, and fracture repair. A modified bicoronal approach, with bilateral parasagittal craniotomies, was performed. A central island of bone was left intact to spare the diastatic fracture from the craniotomies. This was done to ensure a stable anchor point for tacking-up the underlying displaced dura and SSS. The central bone prevents extensive bleeding from the diastatic fracture and eliminates the risk of further blood reaccumulation and tearing of a possible injured sinus during bone flap elevation.The technique performed allowed us to evacuate completely the hematoma while preserving the SSS and repairing the sagittal suture to avoid further bleeding. Complete neurologic recovery of the patient occurred after VEH evacuation.Because of its rare nature, VEH represents a surgical challenge. Because neurosurgeons encounter this condition relatively infrequently, literature regarding the medical and surgical management of this entity is warranted.

    View details for DOI 10.1016/j.wneu.2017.04.040

    View details for Web of Science ID 000405479900063

    View details for PubMedID 28427975

  • High-Definition Fiber Tractography in the Evaluation and Surgical Planning of Lhermitte-Duclos Disease: A Case Report WORLD NEUROSURGERY Fernandes-Cabral, D. T., Zenonos, G. A., Hamilton, R. L., Panesar, S. S., Fernandez-Miranda, J. C. 2016; 92: 587.e9–587.e13

    Abstract

    Preoperative delineation of normal tissue displacement patterns in Lhermitte-Duclos disease has not been feasible with conventional imaging means. Surgical resection of this type of lesion remains challenging, because the boundaries of the lesion are indistinguishable during surgery.The clinical presentation, preoperative and postoperative magnetic resonance imaging (MRI) findings, high-definition fiber tractography (HDFT) and histopathological studies, are presented in a 46-year-old male subject with symptomatic Lhermitte-Duclos disease. HDFT was performed using a quantitative anisotropy-based generalized deterministic tracking algorithm to define fiber tracts. Displacement of the cerebellar and brainstem tracts on the affected side was performed using the unaffected contralateral side as a comparison. The displacement of the normal tissues was not apparent on preoperative MRI but was immediately evident on the preoperative HDFT. Of note, there was a relative paucity of fiber tracts within the lesion. By tailoring our operative boundaries based on the HDFT findings, we were able to spare the displaced fiber tracts when debulking the tumor. Restoration of normal fiber tract anatomy on postoperative HDFT imaging was correlated with clinical resolution of preoperative symptoms.This case report suggests that HDFT may be a powerful surgical planning tool in cases of Lhermitte-Duclos disease, in which the pattern of normal tissue displacement is not evident with conventional imaging, allowing maximal lesion resection without damage to the unaffected tracts. Therefore, this report contributes to solving the greatest challenge when operating on this type of lesion, which has not been resolved in any previous report in our review of the English literature.

    View details for DOI 10.1016/j.wneu.2016.04.128

    View details for Web of Science ID 000384160300119

    View details for PubMedID 27168233

  • Multidisciplinary Team Management of Cerebral Metastases: Recent Trends and Future Implications CLINICAL ONCOLOGY Panesar, S., Tailor, J., Bhangoo, R., Ashkan, K. 2016; 28 (5): 343–44

    View details for DOI 10.1016/j.clon.2015.10.006

    View details for Web of Science ID 000373606000046

    View details for PubMedID 26524931