Professional Education

  • Doctor of Philosophy, University of California San Francisco (2010)

Stanford Advisors

All Publications

  • Electrical synapses connect a network of gonadotropin releasing hormone neurons in a cichlid fish PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Ma, Y., Juntti, S. A., Hu, C. K., Huguenard, J. R., Fernald, R. D. 2015; 112 (12): 3805-3810


    Initiating and regulating vertebrate reproduction requires pulsatile release of gonadotropin-releasing hormone (GnRH1) from the hypothalamus. Coordinated GnRH1 release, not simply elevated absolute levels, effects the release of pituitary gonadotropins that drive steroid production in the gonads. However, the mechanisms underlying synchronization of GnRH1 neurons are unknown. Control of synchronicity by gap junctions between GnRH1 neurons has been proposed but not previously found. We recorded simultaneously from pairs of transgenically labeled GnRH1 neurons in adult male Astatotilapia burtoni cichlid fish. We report that GnRH1 neurons are strongly and uniformly interconnected by electrical synapses that can drive spiking in connected cells and can be reversibly blocked by meclofenamic acid. Our results suggest that electrical synapses could promote coordinated spike firing in a cellular assemblage of GnRH1 neurons to produce the pulsatile output necessary for activation of the pituitary and reproduction.

    View details for DOI 10.1073/pnas.1421851112

    View details for Web of Science ID 000351477000061

    View details for PubMedID 25775522

  • Tol2-Mediated Generation of a Transgenic Haplochromine Cichlid, Astatotilapia burtoni PLOS ONE Juntti, S. A., Hu, C. K., Fernald, R. D. 2013; 8 (10)
  • Tol2-mediated generation of a transgenic haplochromine cichlid, Astatotilapia burtoni. PloS one Juntti, S. A., Hu, C. K., Fernald, R. D. 2013; 8 (10)


    Cichlid fishes represent one of the most species-rich and rapid radiations of a vertebrate family. These ∼2200 species, predominantly found in the East African Great Lakes, exhibit dramatic differences in anatomy, physiology, and behavior. However, the genetic bases for this radiation, and for the control of their divergent traits, are unknown. A flood of genomic and transcriptomic data promises to suggest mechanisms underlying the diversity, but transgenic technology will be needed to rigorously test the hypotheses generated. Here we demonstrate the successful use of the Tol2 transposon system to generate transgenic Astatotilapia burtoni, a haplochromine cichlid from Lake Tanganyika, carrying the GFP transgene under the control of the ubiquitous EF1α promoter. The transgene integrates into the genome, is successfully passed through the germline, and the widespread GFP expression pattern is stable across siblings and multiple generations. The stable inheritance and expression patterns indicate that the Tol2 system can be applied to generate A. burtoni transgenic lines. Transgenesis has proven to be a powerful technology for manipulating genes and cells in other model organisms and we anticipate that transgenic A. burtoni and other cichlids will be used to test the mechanisms underlying behavior and speciation.

    View details for DOI 10.1371/journal.pone.0077647

    View details for PubMedID 24204902