All Publications

  • Identical Water Dynamics in Acrylamide Hydrogels, Polymers, and Monomers in Solution: Ultrafast IR Spectroscopy and Molecular Dynamics Simulations. Journal of the American Chemical Society Roget, S. A., Piskulich, Z. A., Thompson, W. H., Fayer, M. D. 2021


    The dynamics and structure of water in polyacrylamide hydrogels (PAAm-HG), polyacrylamide, and acrylamide solutions are investigated using ultrafast infrared experiments on the OD stretch of dilute HOD/H2O and molecular dynamics simulations. The amide moiety of the monomer/polymers interacts strongly with water through hydrogen bonding (H-bonding). The FT-IR spectra of the three systems indicate that the range of H-bond strengths is relatively unchanged from bulk water. Vibrational population relaxation measurements show that the amide/water H-bonds are somewhat weaker but fall within the range of water/water H-bond strengths. A previous study of water dynamics in PAAm-HG suggested that the slowing observed was due to increasing confinement with concentration. Here, for the same concentrations of the amide moiety, the experimental results demonstrate that the reorientational dynamics (infrared pump-probe experiments) and structural dynamics (two-dimensional infrared spectroscopy) are identical in the three acrylamide systems studied. Molecular dynamics simulations of the water orientational relaxation in aqueous solutions of the acrylamide monomer, trimer, and pentamer are in good agreement with the experimental results and are essentially chain length independent. The simulations show that there is a slower, low-amplitude (<7%) decay component not accessible by the experiments. The simulations examine the dynamics and structure of water H-bonded to acrylamide, in the first solvent shell, and beyond for acrylamide monomers and short chains. The experiments and simulations show that the slowing of water dynamics in PAAm-HG is not caused by confinement in the polymer network but rather by interactions with individual acrylamide moieties.

    View details for DOI 10.1021/jacs.1c07151

    View details for PubMedID 34491037

  • Bulk-like and Interfacial Water Dynamics in Nafion Fuel Cell Membranes Investigated with Ultrafast Nonlinear IR Spectroscopy. The journal of physical chemistry. B Roget, S. A., Kramer, P. L., Thomaz, J. E., Fayer, M. D. 2019


    The water confined in the hydrophilic domains of Nafion fuel cell membranes is central to its primary function of ion transport. Water dynamics are intimately linked to proton transfer and are sensitive to the structural features and length scales of confinement. Here, ultrafast polarization-selective pump-probe and two-dimensional infrared vibrational echo (2D IR) experiments were performed on fully hydrated Nafion membranes with sodium counterions to explicate the water dynamics. Like aerosol-OT reverse micelles (AOT RMs), the water dynamics in Nafion are attributed to bulk-like core water in the central region of the hydrophilic domains and much slower interfacial water. Population and orientational dynamics of water in Nafion are slowed by polymer confinement. Comparison of the observed dynamics to those of AOT RMs helps identify local interactions between water and sulfonate anions at the interface and among water molecules in the core. This comparison also demonstrates that the well-known spherical cluster morphology of Nafion is not appropriate. Spectral diffusion of the interfacial water, which arises from structural dynamics, was obtained from the 2D IR experiments taking the core water to have dynamics similar to bulk water. Like the orientational dynamics, spectral diffusion was found to be much slower at the interface compared to bulk water. Together, the dynamics indicate slow reorganization of weakly hydrogen-bonded water molecules at the interface of Nafion. These results provide insights into proton transport mechanisms in fuel cell membranes, and more generally, water dynamics near the interface of confining systems.

    View details for DOI 10.1021/acs.jpcb.9b07592

    View details for PubMedID 31580076