All Publications

  • Combining avidin with CD63 improves basophil activation test accuracy in classifying peanut allergy. Allergy Castaño, N., Chua, K., Kaushik, A., Kim, S., Cordts, S. C., Nafarzadegan, C. D., Hofmann, G. H., Seastedt, H., Schuetz, J. P., Dunham, D., Parsons, E. S., Tsai, M., Cao, S., Desai, M., Sindher, S. B., Chinthrajah, R. S., Galli, S. J., Nadeau, K. C., Tang, S. K. 2023


    Conventional basophil activation tests (BATs) measure basophil activation by the increased expression of CD63. Previously, fluorophore-labeled avidin, a positively-charged molecule, was found to bind to activated basophils, which tend to expose negatively charged granule constituents during degranulation. This study further compares avidin versus CD63 as basophil activation biomarkers in classifying peanut allergy.Seventy subjects with either a peanut allergy (N = 47), a food allergy other than peanut (N = 6), or no food allergy (N = 17) were evaluated. We conducted BATs in response to seven peanut extract (PE) concentrations (0.01-10,000 ng/mL) and four control conditions (no stimulant, anti-IgE, fMLP (N-formylmethionine-leucyl-phenylalanine), and anti-FcεRI). We measured avidin binding and CD63 expression on basophils with flow cytometry. We evaluated logistic regression and XGBoost models for peanut allergy classification and feature identification.Avidin binding was correlated with CD63 expression. Both markers discriminated between subjects with and without a peanut allergy. Although small by percentage, an avidin+ /CD63- cell subset was found in all allergic subjects tested, indicating that the combination of avidin and CD63 could allow a more comprehensive identification of activated basophils. Indeed, we obtained the best classification accuracy (97.8% sensitivity, 96.7% specificity) by combining avidin and CD63 across seven PE doses. Similar accuracy was obtained by combining PE dose of 10,000 ng/mL for avidin and PE doses of 10 and 100 ng/mL for CD63.Avidin and CD63 are reliable BAT activation markers associated with degranulation. Their combination enhances the identification of activated basophils and improves the classification accuracy of peanut allergy.

    View details for DOI 10.1111/all.15930

    View details for PubMedID 37916710

  • Fabrication of a silicon mu Dicer for uniform microdissection of tissue samples APPLIED PHYSICS LETTERS Cordts, S. C., Castano, N., Koppaka, S., Tang, S. Y. 2021; 119 (1)

    View details for DOI 10.1063/5.0053792

    View details for Web of Science ID 000691551300002

  • Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS omega Castano, N., Cordts, S. C., Kurosu Jalil, M., Zhang, K. S., Koppaka, S., Bick, A. D., Paul, R., Tang, S. K. 2021; 6 (10): 6509–27


    Inanimate objects or surfaces contaminated with infectious agents, referred to as fomites, play an important role in the spread of viruses, including SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The long persistence of viruses (hours to days) on surfaces calls for an urgent need for effective surface disinfection strategies to intercept virus transmission and the spread of diseases. Elucidating the physicochemical processes and surface science underlying the adsorption and transfer of virus between surfaces, as well as their inactivation, is important for understanding how diseases are transmitted and for developing effective intervention strategies. This review summarizes the current knowledge and underlying physicochemical processes of virus transmission, in particular via fomites, and common disinfection approaches. Gaps in knowledge and the areas in need of further research are also identified. The review focuses on SARS-CoV-2, but discussion of related viruses is included to provide a more comprehensive review given that much remains unknown about SARS-CoV-2. Our aim is that this review will provide a broad survey of the issues involved in fomite transmission and intervention to a wide range of readers to better enable them to take on the open research challenges.

    View details for DOI 10.1021/acsomega.0c06335

    View details for PubMedID 33748563

  • Microfluidic methods for precision diagnostics in food allergy. Biomicrofluidics Castaño, N. n., Cordts, S. C., Nadeau, K. C., Tsai, M. n., Galli, S. J., Tang, S. K. 2020; 14 (2): 021503


    Food allergy has reached epidemic proportions and has become a significant source of healthcare burden. Oral food challenge, the gold standard for food allergy assessment, often is not performed because it places the patient at risk of developing anaphylaxis. However, conventional alternative food allergy tests lack a sufficient predictive value. Therefore, there is a critical need for better diagnostic tests that are both accurate and safe. Microfluidic methods have the potential of helping one to address such needs and to personalize the diagnostics. This article first reviews conventional diagnostic approaches used in food allergy. Second, it reviews recent efforts to develop novel biomarkers and in vitro diagnostics. Third, it summarizes the microfluidic methods developed thus far for food allergy diagnosis. The article concludes with a discussion of future opportunities for using microfluidic methods for achieving precision diagnostics in food allergy, including multiplexing the detection of multiple biomarkers, sampling of tissue-resident cytokines and immune cells, and multi-organ-on-a-chip technology.

    View details for DOI 10.1063/1.5144135

    View details for PubMedID 32266046

    View details for PubMedCentralID PMC7127910