Shi Dong
Ph.D. Student in Electrical Engineering, admitted Autumn 2016
Ph.D. Minor, Management Science and Engineering
All Publications
-
An Information-Theoretic Analysis for Thompson Sampling with Many Actions
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2018
View details for Web of Science ID 000461823304019
-
Electrochemically Programmable Plasmonic Antennas.
ACS nano
2016; 10 (7): 6716-6724
Abstract
Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications.
View details for DOI 10.1021/acsnano.6b02031
View details for PubMedID 27328022