All Publications


  • Reconciling Dimensional and Categorical Models of Autism Heterogeneity: A Brain Connectomics and Behavioral Study. Biological psychiatry Tang, S., Sun, N., Floris, D. L., Zhang, X., Di Martino, A., Yeo, B. T. 2019

    Abstract

    BACKGROUND: Heterogeneity in autism spectrum disorder (ASD) has hindered the development of biomarkers, thus motivating subtyping efforts. Most subtyping studies divide individuals with ASD into nonoverlapping (categorical) subgroups. However, continuous interindividual variation in ASD suggests that there is a need for a dimensional approach.METHODS: A Bayesian model was employed to decompose resting-state functional connectivity (RSFC) of individuals with ASD into multiple abnormal RSFC patterns, i.e., categorical subtypes, henceforth referred to as "factors." Importantly, the model allowed each individual to express one or more factors to varying degrees (dimensional subtyping). The model was applied to 306 individuals with ASD (5.2-57 years of age) from two multisite repositories. Post hoc analyses associated factors with symptoms and demographics.RESULTS: Analyses yielded three factors with dissociable whole-brain hypo- and hyper-RSFC patterns. Most participants expressed multiple (categorical) factors, suggestive of a mosaic of subtypes within individuals. All factors shared abnormal RSFC involving the default mode network, but the directionality (hypo- or hyper-RSFC) differed across factors. Factor 1 was associated with core ASD symptoms. Factors 1 and 2 were associated with distinct comorbid symptoms. Older male participants preferentially expressed factor 3. Factors were robust across control analyses and were not associated with IQ or head motion.CONCLUSIONS: There exist at least three ASD factors with dissociable whole-brain RSFC patterns, behaviors, and demographics. Heterogeneous default mode network hypo- and hyper-RSFC across the factors might explain previously reported inconsistencies. The factors differentiated between core ASD and comorbid symptoms-a less appreciated domain of heterogeneity in ASD. These factors are coexpressed in individuals with ASD with different degrees, thus reconciling categorical and dimensional perspectives of ASD heterogeneity.

    View details for DOI 10.1016/j.biopsych.2019.11.009

    View details for PubMedID 31955916

  • Somatosensory-Motor Dysconnectivity Spans Multiple Transdiagnostic Dimensions of Psychopathology. Biological psychiatry Kebets, V., Holmes, A. J., Orban, C., Tang, S., Li, J., Sun, N., Kong, R., Poldrack, R. A., Yeo, B. T. 2019

    Abstract

    BACKGROUND: There is considerable interest in a dimensional transdiagnostic approach to psychiatry. Most transdiagnostic studies have derived factors based only on clinical symptoms, which might miss possible links between psychopathology, cognitive processes, and personality traits. Furthermore, many psychiatric studies focus on higher-order association brain networks, thereby neglecting the potential influence of huge swaths of the brain.METHODS: A multivariate data-driven approach (partial least squares) was used to identify latent components linking a large set of clinical, cognitive, and personality measures to whole-brain resting-state functional connectivity patterns across 224 participants. The participants were either healthy (n= 110) or diagnosed with bipolar disorder (n= 40), attention-deficit/hyperactivity disorder (n= 37), schizophrenia (n= 29), or schizoaffective disorder (n= 8). In contrast to traditional case-control analyses, the diagnostic categories were not used in the partial least squares analysis but were helpful for interpreting the components.RESULTS: Our analyses revealed three latent components corresponding to general psychopathology, cognitive dysfunction, and impulsivity. Each component was associated with a unique whole-brain resting-state functional connectivity signature and was shared across all participants. The components were robust across multiple control analyses and replicated using independent task functional magnetic resonance imaging data from the same participants. Strikingly, all three components featured connectivity alterations within the somatosensory-motor network and its connectivity with subcortical structures and cortical executive networks.CONCLUSIONS: We identified three distinct dimensions with dissociable (but overlapping) whole-brain resting-state functional connectivity signatures across healthy individuals and individuals with psychiatric illness, providing potential intermediate phenotypes that span across diagnostic categories. Our results suggest expanding the focus of psychiatric neuroscience beyond higher-order brain networks.

    View details for DOI 10.1016/j.biopsych.2019.06.013

    View details for PubMedID 31515054