Stanford Advisors


All Publications


  • Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions CHEMISTRY OF MATERIALS Zheng, Y., Ashizawa, M., Zhang, S., Kang, J., Nikzad, S., Yu, Z., Ochiai, Y., Wu, H., Tran, H., Mun, J., Zheng, Y., Tok, J., Gu, X., Bao, Z. 2020; 32 (13): 5700–5714
  • An Intrinsically Stretchable High-Performance Polymer Semiconductor with Low Crystallinity ADVANCED FUNCTIONAL MATERIALS Zheng, Y., Wang, G., Kang, J., Nikolka, M., Wu, H., Tran, H., Zhang, S., Yan, H., Chen, H., Yuen, P., Mun, J., Dauskardt, R. H., McCulloch, I., Tok, J., Gu, X., Bao, Z. 2019
  • Tuning the Cross-Linker Crystallinity of a Stretchable Polymer Semiconductor CHEMISTRY OF MATERIALS Wang, G., Zheng, Y., Zhang, S., Kang, J., Wu, H., Gasperini, A., Zhang, H., Gu, X., Bao, Z. 2019; 31 (17): 6465–75
  • Wafer-Scale Fabrication of High-Performance n-Type Polymer Monolayer Transistors Using a Multi-Level Self-Assembly Strategy ADVANCED MATERIALS Yao, Z., Zheng, Y., Li, Q., Lei, T., Zhang, S., Zou, L., Liu, H., Dou, J., Lu, Y., Wang, J., Gu, X., Pei, J. 2019; 31 (7)
  • Wafer-Scale Fabrication of High-Performance n-Type Polymer Monolayer Transistors Using a Multi-Level Self-Assembly Strategy. Advanced materials (Deerfield Beach, Fla.) Yao, Z., Zheng, Y., Li, Q., Lei, T., Zhang, S., Zou, L., Liu, H., Dou, J., Lu, Y., Wang, J., Gu, X., Pei, J. 2018: e1806747

    Abstract

    Wafer-scale fabrication of high-performance uniform organic electronic materials is of great challenge and has rarely been realized before. Previous large-scale fabrication methods always lead to different layer thickness and thereby poor film and device uniformity. Herein, the first demonstration of 4 in. wafer-scale, uniform, and high-performance n-type polymer monolayer films is reported, enabled by controlling the multi-level self-assembly process of conjugated polymers in solution. Since the self-assembly process happened in solution, the uniform 2D polymer monolayers can be facilely deposited on various substrates, and theoretically without size limitations. Polymer monolayer transistors exhibit high electron mobilities of up to 1.88 cm2 V-1 s-1 , which is among the highest in n-type monolayer organic transistors. This method allows to easily fabricate n-type conjugated polymers with wafer-scale, high uniformity, low contact resistance, and excellent transistor performance (better than the traditional spin-coating method). This work provides an effective strategy to prepare large-scale and uniform 2D polymer monolayers, which could enable the application of conjugated polymers for wafer-scale sophisticated electronics.

    View details for PubMedID 30549332