All Publications

  • Prolonged delays in human microbiota transmission after a controlled antibiotic perturbation. bioRxiv : the preprint server for biology Xue, K. S., Walton, S. J., Goldman, D. A., Morrison, M. L., Verster, A. J., Parrott, A. B., Yu, F. B., Neff, N. F., Rosenberg, N. A., Ross, B. D., Petrov, D. A., Huang, K. C., Good, B. H., Relman, D. A. 2023


    Humans constantly encounter new microbes, but few become long-term residents of the adult gut microbiome. Classical theories predict that colonization is determined by the availability of open niches, but it remains unclear whether other ecological barriers limit commensal colonization in natural settings. To disentangle these effects, we used a controlled perturbation with the antibiotic ciprofloxacin to investigate the dynamics of gut microbiome transmission in 22 households of healthy, cohabiting adults. Colonization was rare in three-quarters of antibiotic-taking subjects, whose resident strains rapidly recovered in the week after antibiotics ended. In contrast, the remaining subjects exhibited lasting responses to antibiotics, with extensive species losses and transient expansions of potential opportunistic pathogens. These subjects experienced elevated rates of commensal colonization, but only after long delays: many new colonizers underwent sudden, correlated expansions months after the antibiotic perturbation. Furthermore, strains that had previously transmitted between cohabiting partners rarely recolonized after antibiotic disruptions, showing that colonization displays substantial historical contingency. This work demonstrates that there remain substantial ecological barriers to colonization even after major microbiome disruptions, suggesting that dispersal interactions and priority effects limit the pace of community change.

    View details for DOI 10.1101/2023.09.26.559480

    View details for PubMedID 37808827

    View details for PubMedCentralID PMC10557656

  • Construction and characterization of a genome-scale ordered mutant collection of Bacteroides thetaiotaomicron. BMC biology Arjes, H. A., Sun, J., Liu, H., Nguyen, T. H., Culver, R. N., Celis, A. I., Walton, S. J., Vasquez, K. S., Yu, F. B., Xue, K. S., Newton, D., Zermeno, R., Weglarz, M., Deutschbauer, A., Huang, K. C., Shiver, A. L. 2022; 20 (1): 285


    Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development.Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community. We used flow cytometry to sort single cells from a pooled library, located mutants within this initial progenitor collection by applying a pooling strategy with barcode sequencing, and re-arrayed specific mutants to create a condensed collection with single-insertion strains covering >2500 genes. To demonstrate the potential of the condensed collection for phenotypic screening, we analyzed growth dynamics and cell morphology. We identified both growth defects and altered cell shape in mutants disrupting sphingolipid synthesis and thiamine scavenging. Finally, we analyzed the process of assembling the B. theta condensed collection to identify inefficiencies that limited coverage. We demonstrate as part of this analysis that the process of assembling an ordered collection can be accurately modeled using barcode sequencing data.We expect that utilization of this ordered collection will accelerate research into B. theta physiology and that lessons learned while assembling the collection will inform future efforts to assemble ordered mutant collections for an increasing number of gut microbiota members.

    View details for DOI 10.1186/s12915-022-01481-2

    View details for PubMedID 36527020