All Publications

  • Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues. Journal of the American Chemical Society Kim, S. S., Sattely, E. S. 2021


    Phenylpropanoids are a class of abundant building blocks found in plants and derived from phenylalanine and tyrosine. Phenylpropanoid polymerization leads to the second most abundant biopolymer lignin while stereo- and site-selective coupling generates an array of lignan natural products with potent biological activity, including the topoisomerase inhibitor and chemotherapeutic etoposide. A key step in etoposide biosynthesis involves a plant dirigent protein that promotes selective dimerization of coniferyl alcohol, a common phenylpropanoid, to form (+)-pinoresinol, a critical C2 symmetric pathway intermediate. Despite the power of this coupling reaction for the elegant and rapid assembly of the etoposide scaffold, dirigent proteins have not been utilized to generate other complex lignan natural products. Here, we demonstrate that dirigent proteins from Podophyllum hexandrum in combination with a laccase guide the heterocoupling of natural and synthetic coniferyl alcohol analogues for the enantioselective synthesis of pinoresinol analogues. This route for complexity generation is remarkably direct and efficient: three new bonds and four stereocenters are produced from two different achiral monomers in a single step. We anticipate our results will enable biocatalytic routes to difficult-to-access non-natural lignan analogues and etoposide derivatives. Furthermore, these dirigent protein and laccase-promoted reactions of coniferyl alcohol analogues represent new regio- and enantioselective oxidative heterocouplings for which no other chemical methods have been reported.

    View details for DOI 10.1021/jacs.0c13164

    View details for PubMedID 33780244

  • Total Biosynthesis for Milligram-Scale Production of Etoposide Intermediates in a Plant Chassis JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Schultz, B. J., Kim, S., Lau, W., Sattely, E. S. 2019; 141 (49): 19231–35


    Etoposide is a plant-derived drug used clinically to treat several forms of cancer. Recent shortages of etoposide demonstrate the need for a more dependable production method to replace the semisynthetic method currently in place, which relies on extraction of a precursor natural product from Himalayan mayapple. Here we report milligram-scale production of (-)-deoxypodophyllotoxin, a late-stage biosynthetic precursor to the etoposide aglycone, using an engineered biosynthetic pathway in tobacco. Our strategy relies on engineering the supply of coniferyl alcohol, an endogenous tobacco metabolite and monolignol precursor to the etoposide aglycone. We show that transient expression of 16 genes, encoding both coniferyl alcohol and main etoposide aglycone pathway enzymes from mayapple, in tobacco leaves results in the accumulation of up to 4.3 mg/g dry plant weight (-)-deoxypodophyllotoxin, and enables isolation of high-purity (-)-deoxypodophyllotoxin after chromatography at levels up to 0.71 mg/g dry plant weight. Our work reveals that long (>10 step) pathways can be efficiently transferred from difficult-to-cultivate medicinal plants to a tobacco plant production chassis, and demonstrates mg-scale total biosynthesis for access to valuable precursors of the chemotherapeutic etoposide.

    View details for DOI 10.1021/jacs.9b10717

    View details for Web of Science ID 000502687800008

    View details for PubMedID 31755709