Stanford Advisors


All Publications


  • Macrophage inflammatory and regenerative response periodicity is programmed by cell cycle and chromatin state. Molecular cell Daniel, B., Belk, J. A., Meier, S. L., Chen, A. Y., Sandor, K., Czimmerer, Z., Varga, Z., Bene, K., Buquicchio, F. A., Qi, Y., Kitano, H., Wheeler, J. R., Foster, D. S., Januszyk, M., Longaker, M. T., Chang, H. Y., Satpathy, A. T. 2022

    Abstract

    Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings invivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.

    View details for DOI 10.1016/j.molcel.2022.11.017

    View details for PubMedID 36521490

  • Divergent clonal differentiation trajectories of T cell exhaustion. Nature immunology Daniel, B., Yost, K. E., Hsiung, S., Sandor, K., Xia, Y., Qi, Y., Hiam-Galvez, K. J., Black, M., J Raposo, C., Shi, Q., Meier, S. L., Belk, J. A., Giles, J. R., Wherry, E. J., Chang, H. Y., Egawa, T., Satpathy, A. T. 2022

    Abstract

    Chronic antigen exposure during viral infection or cancer promotes an exhausted T cell (Tex) state with reduced effector function. However, whether all antigen-specific T cell clones follow the same Tex differentiation trajectory remains unclear. Here, we generate a single-cell multiomic atlas of T cell exhaustion in murine chronic viral infection that redefines Tex phenotypic diversity, including two late-stage Tex subsets with either a terminal exhaustion (Texterm) or a killer cell lectin-like receptor-expressing cytotoxic (TexKLR) phenotype. We use paired single-cell RNA and T cell receptor sequencing to uncover clonal differentiation trajectories of Texterm-biased, TexKLR-biased or divergent clones that acquire both phenotypes. We show that high T cell receptor signaling avidity correlates with Texterm, whereas low avidity correlates with effector-like TexKLR fate. Finally, we identify similar clonal differentiation trajectories in human tumor-infiltrating lymphocytes. These findings reveal clonal heterogeneity in the T cell response to chronic antigen that influences Tex fates and persistence.

    View details for DOI 10.1038/s41590-022-01337-5

    View details for PubMedID 36289450

  • Bystander T cells in cancer immunology and therapy. Nature cancer Meier, S. L., Satpathy, A. T., Wells, D. K. 2022; 3 (2): 143-155

    Abstract

    Cancer-specific T cells are required for effective anti-cancer immunity and have a central role in cancer immunotherapy. However, emerging evidence suggests that only a small fraction of tumor-infiltrating T cells are cancer specific, and T cells that recognize cancer-unrelated antigens (so-called 'bystanders') are abundant. Although the role of cancer-specific T cells in anti-cancer immunity has been well established, the implications of bystander T cells in tumors are only beginning to be understood. It is becoming increasingly clear that bystander T cells are not a homogeneous group of cells but, instead, they differ in their specificities, their activation states and effector functions. In this Perspective, we discuss recent studies of bystander T cells in tumors, including experimental and computational approaches that enable their identification and functional analysis and viewpoints on how these insights could be used to develop new therapeutic approaches for cancer immunotherapy.

    View details for DOI 10.1038/s43018-022-00335-8

    View details for PubMedID 35228747