All Publications


  • Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor. Science (New York, N.Y.) Suomivuori, C., Latorraca, N. R., Wingler, L. M., Eismann, S., King, M. C., Kleinhenz, A. L., Skiba, M. A., Staus, D. P., Kruse, A. C., Lefkowitz, R. J., Dror, R. O. 2020; 367 (6480): 881–87

    Abstract

    Biased signaling, in which different ligands that bind to the same G protein-coupled receptor preferentially trigger distinct signaling pathways, holds great promise for the design of safer and more effective drugs. Its structural mechanism remains unclear, however, hampering efforts to design drugs with desired signaling profiles. Here, we use extensive atomic-level molecular dynamics simulations to determine how arrestin bias and G protein bias arise at the angiotensin II type 1 receptor. The receptor adopts two major signaling conformations, one of which couples almost exclusively to arrestin, whereas the other also couples effectively to a G protein. A long-range allosteric network allows ligands in the extracellular binding pocket to favor either of the two intracellular conformations. Guided by this computationally determined mechanism, we designed ligands with desired signaling profiles.

    View details for DOI 10.1126/science.aaz0326

    View details for PubMedID 32079767

  • High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor SCIENCE Gong, Y., Huang, C., Li, J. Z., Grewe, B. F., Zhang, Y., Eismann, S., Schnitzer, M. J. 2015; 350 (6266): 1361-1366

    Abstract

    Genetically encoded voltage indicators (GEVIs) are a promising technology for fluorescence readout of millisecond-scale neuronal dynamics. Previous GEVIs had insufficient signaling speed and dynamic range to resolve action potentials in live animals. We coupled fast voltage-sensing domains from a rhodopsin protein to bright fluorophores through resonance energy transfer. The resulting GEVIs are sufficiently bright and fast to report neuronal action potentials and membrane voltage dynamics in awake mice and flies, resolving fast spike trains with 0.2-millisecond timing precision at spike detection error rates orders of magnitude better than previous GEVIs. In vivo imaging revealed sensory-evoked responses, including somatic spiking, dendritic dynamics, and intracellular voltage propagation. These results empower in vivo optical studies of neuronal electrophysiology and coding and motivate further advancements in high-speed microscopy.

    View details for DOI 10.1126/science.aab0810

    View details for Web of Science ID 000366162400039

    View details for PubMedID 26586188

    View details for PubMedCentralID PMC4904846