Clinical Focus

  • Pathology

Academic Appointments

  • Clinical Instructor, Pathology

Professional Education

  • Doctor of Philosophy, Baylor College Of Medicine (2012)
  • Doctor of Medicine, Baylor College Of Medicine (2014)
  • Bachelor of Science, Cornell University (2004)
  • Residency:Stanford University Department of PathologyCA

Stanford Advisors

All Publications

  • A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Modern pathology Ozawa, M. G., Bhaduri, A., Chisholm, K. M., Baker, S. A., Ma, L., Zehnder, J. L., Luna-Fineman, S., Link, M. P., Merker, J. D., Arber, D. A., Ohgami, R. S. 2016; 29 (10): 1212-1220


    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.Modern Pathology advance online publication, 24 June 2016; doi:10.1038/modpathol.2016.102.

    View details for DOI 10.1038/modpathol.2016.102

    View details for PubMedID 27338637

  • How I use clinical decision support to improve red blood cell utilization. Transfusion Tim Goodnough, L., Andrew Baker, S., Shah, N. 2016; 56 (10): 2406-2411


    Despite 20 years of published medical society guidelines for blood transfusion and a pivotal clinical trial in 1999 providing Level 1 evidence that restrictive transfusion practices can be utilized safely, blood transfusions did not begin to decline in the United States until 2010. Widespread adoption of electronic medical records allowed implementation of computerized systems such as clinical decision support (CDS) with best practice alerts to improve blood utilization. We describe our own experience using well-designed and highly targeted CDS to promote restrictive transfusion practices and improve red blood cell utilization, with a 42% reduction in blood transfusions from 2009 through 2015, accompanied by improved clinical outcomes.

    View details for DOI 10.1111/trf.13767

    View details for PubMedID 27546388

  • Transportation Cooler Interventions Reduce Plasma and RBC Product Wastage. American journal of clinical pathology Metcalf, R. A., Baker, S. A., Goodnough, L. T., Shah, N. 2016; 146 (1): 18-24


    The rate of plasma product wastage for the United States in 2011 was approximately 1.8%. The plasma wastage rate at our institution was higher, mainly due to products returned out of temperature range from procedural areas. A process review and intervention to reduce plasma wastage was undertaken, which included modifications to our transport cooler.A new cooler system was designed, and this device was implemented alongside an updated protocol for delivering plasma while also enhancing the previous RBC cooler validation time. We audited plasma and RBC product wastage prior to these interventions, from January 2013 to February 2014, vs after the intervention from April 2014 to March 2015.After the intervention, the monthly plasma wastage rate declined 60% (12.6 units/100 units transfused preintervention vs 5.0 units/100 units transfused postintervention; Pā€‰<ā€‰.0001). The monthly RBC wastage rate also decreased 28% (3.2 units/100 units transfused preintervention vs 2.3 units/100 units transfused postintervention; Pā€‰<ā€‰.01).Our intervention resulted in significantly decreased plasma and RBC wastage and is broadly applicable, since out-of-temperature product wastage in procedural areas is likely a significant problem at many institutions.

    View details for DOI 10.1093/ajcp/aqw082

    View details for PubMedID 27357292