All Publications


  • Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nature biotechnology Jiang, Y., Trotsyuk, A. A., Niu, S., Henn, D., Chen, K., Shih, C. C., Larson, M. R., Mermin-Bunnell, A. M., Mittal, S., Lai, J. C., Saberi, A., Beard, E., Jing, S., Zhong, D., Steele, S. R., Sun, K., Jain, T., Zhao, E., Neimeth, C. R., Viana, W. G., Tang, J., Sivaraj, D., Padmanabhan, J., Rodrigues, M., Perrault, D. P., Chattopadhyay, A., Maan, Z. N., Leeolou, M. C., Bonham, C. A., Kwon, S. H., Kussie, H. C., Fischer, K. S., Gurusankar, G., Liang, K., Zhang, K., Nag, R., Snyder, M. P., Januszyk, M., Gurtner, G. C., Bao, Z. 2022

    Abstract

    'Smart' bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.

    View details for DOI 10.1038/s41587-022-01528-3

    View details for PubMedID 36424488

    View details for PubMedCentralID 5350204

  • Characterization of Mechanoresponsive Inflammatory Cells during Wound Healing Chen, K., Griffin, M., Henn, D., Bonham, C. A., Fischer, K., Padmanabhan, J., Trotsyuk, A. A., Sivaraj, D., Leeolou, M., Kussie, H. C., Huskins, S., Steele, S., Perrault, D., Longaker, M. T., Gurtner, G. C. WILEY. 2022: A22
  • Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Science translational medicine Chen, K., Henn, D., Januszyk, M., Barrera, J. A., Noishiki, C., Bonham, C. A., Griffin, M., Tevlin, R., Carlomagno, T., Shannon, T., Fehlmann, T., Trotsyuk, A. A., Padmanabhan, J., Sivaraj, D., Perrault, D. P., Zamaleeva, A. I., Mays, C. J., Greco, A. H., Kwon, S. H., Leeolou, M. C., Huskins, S. L., Steele, S. R., Fischer, K. S., Kussie, H. C., Mittal, S., Mermin-Bunnell, A. M., Diaz Deleon, N. M., Lavin, C., Keller, A., Longaker, M. T., Gurtner, G. C. 2022; 14 (645): eabj9152

    Abstract

    Burns and other traumatic injuries represent a substantial biomedical burden. The current standard of care for deep injuries is autologous split-thickness skin grafting (STSG), which frequently results in contractures, abnormal pigmentation, and loss of biomechanical function. Currently, there are no effective therapies that can prevent fibrosis and contracture after STSG. Here, we have developed a clinically relevant porcine model of STSG and comprehensively characterized porcine cell populations involved in healing with single-cell resolution. We identified an up-regulation of proinflammatory and mechanotransduction signaling pathways in standard STSGs. Blocking mechanotransduction with a small-molecule focal adhesion kinase (FAK) inhibitor promoted healing, reduced contracture, mitigated scar formation, restored collagen architecture, and ultimately improved graft biomechanical properties. Acute mechanotransduction blockade up-regulated myeloid CXCL10-mediated anti-inflammation with decreased CXCL14-mediated myeloid and fibroblast recruitment. At later time points, mechanical signaling shifted fibroblasts toward profibrotic differentiation fates, and disruption of mechanotransduction modulated mesenchymal fibroblast differentiation states to block those responses, instead driving fibroblasts toward proregenerative, adipogenic states similar to unwounded skin. We then confirmed these two diverging fibroblast transcriptional trajectories in human skin, human scar, and a three-dimensional organotypic model of human skin. Together, pharmacological blockade of mechanotransduction markedly improved large animal healing after STSG by promoting both early, anti-inflammatory and late, regenerative transcriptional programs, resulting in healed tissue similar to unwounded skin. FAK inhibition could therefore supplement the current standard of care for traumatic and burn injuries.

    View details for DOI 10.1126/scitranslmed.abj9152

    View details for PubMedID 35584231

  • Pullulan-Collagen Hydrogel Wound Dressing Promotes Dermal Remodeling and Wound Healing Compared to Commercially Available Collagen Dressings. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society Chen, K., Sivaraj, D., Davitt, M., Leeolou, M. C., Henn, D., Steele, S. R., Huskins, S. L., Trotsyuk, A. A., Kussie, H. C., Greco, A., Padmanabhan, J., Perrault, D. P., Zamaleeva, A. I., Longaker, M. T., Gurtner, G. C. 2022

    Abstract

    Biological scaffolds such as hydrogels provide an ideal, physio-mimetic of native ECM that can improve wound healing outcomes after cutaneous injury. While most studies have focused on the benefits of hydrogels in accelerating wound healing, there is minimal data directly comparing different hydrogel material compositions. In this study, we utilized a splinted excisional wound model that recapitulates human-like wound healing in mice and treated wounds with three different collagen hydrogel dressings. We assessed the feasibility of applying each dressing and performed histologic and histopathologic analysis on the explanted scar tissues to assess variations in collagen architecture and alignment, as well as tissue response. Our data indicate that the material properties of hydrogel dressings can significantly influence healing time, cellular response, and resulting architecture of healed scars. Specifically, our pullulan-collagen hydrogel dressing accelerated wound closure and promoted healed tissue with less dense, more randomly aligned, and shorter collagen fibers. Further understanding of how hydrogel properties affect the healing and resulting scar architecture of wounds may lead to novel insights and further optimization of the material properties of wound dressings. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1111/wrr.13012

    View details for PubMedID 35384131

  • Pullulan-Collagen Hydrogel Wound Dressing Promotes Dermal Remodeling and Healing in an Excisional Wound Model Leeolou, M. C., Sivaraj, D., Davitt, M., Henn, D., Steele, S., Huskins, S. L., Trotsyuk, A. A., Kussie, H. C., Greco, A., Perrault, D., Padmanabhan, J., Longaker, M. T., Chen, K., Gurtner, G. C. WILEY. 2022: A24
  • Characterization of Mechanoresponsive Inflammatory Cells during Wound Healing Chen, K., Griffin, M., Henn, D., Bonham, C. A., Fischer, K., Padmanabhan, J., Trotsyuk, A. A., Sivaraj, D., Leeolou, M. C., Kussie, H. C., Huskins, S. L., Steele, S., Perrault, D., Longaker, M. T., Gurtner, G. C. WILEY. 2022: A5
  • Characterization of Mechanoresponsive Inflammatory Cells during Wound Healing Chen, K., Griffin, M., Henn, D., Bonham, C. A., Fischer, K., Padmanabhan, J., Trotsyuk, A. A., Sivaraj, D., Leeolou, M. C., Kussie, H. C., Huskins, S. L., Steele, S., Perrault, D., Longaker, M. T., Gurtner, G. C. WILEY. 2022: A31-A32
  • Interactions Of Fibroblasts Versus Macrophages In An In Vitro Model Of Scar Formation And Wound Healing Huskins, S. L., Griffin, M., Steele, S., Thomas, B., Kussie, H. C., Sivaraj, D., Leeolou, M. C., Trotsyuk, A. A., Padmanabhan, J., Longaker, M. T., Gurtner, G. C., Chen, K. WILEY. 2022: A53-A54
  • Determining How Early Disruption Of Mechanotransduction Affects Acute Wound Healing Kussie, H. C., Sivaraj, D., Leeolou, M. C., Huskins, S. L., Steele, S., Henn, D., Trotsyuk, A. A., Gurtner, G. C., Chen, K. WILEY. 2022: A22
  • Inhibiting Fibroblast Mechanotransduction Modulates Severity of Idiopathic Pulmonary Fibrosis. Advances in wound care Trotsyuk, A. A., Chen, K., Kwon, S. H., Ma, K. C., Henn, D., Mermin-Bunnell, A. M., Mittal, S., Padmanabhan, J., Larson, M. R., Steele, S. R., Sivaraj, D., Bonham, C. A., Noishiki, C., Rodrigues, M., Jiang, Y., Jing, S., Niu, S., Chattopadhyay, A., Perrault, D. P., Leeolou, M. C., Fischer, K., Gurusankar, G., Choi Kussie, H., Wan, D. C., Januszyk, M., Longaker, M. T., Gurtner, G. C. 2021

    Abstract

    OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that affects 63 in every 100,000 Americans. Its etiology remains unknown, although inflammatory pathways appear to be important. Given the dynamic environment of the lung, we examined the significance of mechanotransduction on both inflammatory and fibrotic signaling during IPF.INNOVATION: Mechanotransduction pathways have not been thoroughly examined in the context of lung disease and pharmacologic approaches for IPF do not currently target these pathways. The interplay between mechanical strain and inflammation in pulmonary fibrosis remain incompletely understood.APPROACH: In this study, we used conditional KO mice to block mechanotransduction by knocking out FAK (Focal Adhesion Kinase) expression in fibroblasts, followed by induction of pulmonary fibrosis using bleomycin. We examined both normal human and human IPF fibroblasts and used immunohistochemistry, qRT-PCR, and Western Blot to evaluate the effects of FAK inhibition (FAKI) on modulating fibrotic and inflammatory genes.RESULTS: Our data indicate that deletion of FAK in mice reduces expression of fibrotic and inflammatory genes in lungs. Similarly, mechanical straining in normal human lung fibroblasts activates inflammatory and fibrotic pathways. FAK inhibition decreases these signals but has less effect on IPF fibroblasts as compared to normal human fibroblasts.CONCLUSION: Administering FAKI at early stages of fibrosis may attenuate the FAK-mediated fibrotic response pathway in IPF, potentially mediating disease progression.

    View details for DOI 10.1089/wound.2021.0077

    View details for PubMedID 34544267

  • Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2+ macrophages. Science advances Henn, D., Chen, K., Fehlmann, T., Trotsyuk, A. A., Sivaraj, D., Maan, Z. N., Bonham, C. A., Barrera, J. A., Mays, C. J., Greco, A. H., Moortgat Illouz, S. E., Lin, J. Q., Steele, S. R., Foster, D. S., Padmanabhan, J., Momeni, A., Nguyen, D., Wan, D. C., Kneser, U., Januszyk, M., Keller, A., Longaker, M. T., Gurtner, G. C. 2021; 7 (49): eabi4528

    Abstract

    [Figure: see text].

    View details for DOI 10.1126/sciadv.abi4528

    View details for PubMedID 34851663