Professional Education


  • Bachelor of Science, Yale University (2006)
  • Doctor of Philosophy, University of California San Francisco (2011)

Stanford Advisors


Lab Affiliations


All Publications


  • Basomedial amygdala mediates top-down control of anxiety and fear NATURE Adhikari, A., Lerner, T. N., Finkelstein, J., Pak, S., Jennings, J. H., Davidson, T. J., Ferenczi, E., Gunaydin, L. A., Irzabekov, J. J., Ye, L., Kim, S., Lei, A., Deisseroth, K. 2015; 527 (7577): 179-?

    Abstract

    Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.

    View details for DOI 10.1038/nature15698

    View details for Web of Science ID 000364396700034

    View details for PubMedID 26536109

  • Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits CELL Lerner, T. N., Shilyansky, C., Davidson, T. J., Evans, K. E., Beier, K. T., Zalocusky, K. A., Crow, A. K., Malenka, R. C., Luo, L., Tomer, R., Deisseroth, K. 2015; 162 (3): 635-647
  • Frequency-Dependent, Cell Type-Divergent Signaling in the Hippocamposeptal Projection JOURNAL OF NEUROSCIENCE Mattis, J., Brill, J., Evans, S., Lerner, T. N., Davidson, T. J., Hyun, M., Ramakrishnan, C., Deisseroth, K., Huguenard, J. R. 2014; 34 (35): 11769-11780

    Abstract

    Hippocampal oscillations are critical for information processing, and are strongly influenced by inputs from the medial septum. Hippocamposeptal neurons provide direct inhibitory feedback from the hippocampus onto septal cells, and are therefore likely to also play an important role in the circuit; these neurons fire at either low or high frequency, reflecting hippocampal network activity during theta oscillations or ripple events, respectively. Here, we optogenetically target the long-range GABAergic projection from the hippocampus to the medial septum in rats, and thereby simulate hippocampal input onto downstream septal cells in an acute slice preparation. In response to optogenetic activation of hippocamposeptal fibers at theta and ripple frequencies, we elicit postsynaptic GABAergic responses in a subset (24%) of septal cells, most predominantly in fast-spiking cells. In addition, in another subset of septal cells (19%) corresponding primarily to cholinergic cells, we observe a slow hyperpolarization of the resting membrane potential and a decrease in input resistance, particularly in response to prolonged high-frequency (ripple range) stimulation. This slow response is partially sensitive to GIRK channel and D2 dopamine receptor block. Our results suggest that two independent populations of septal cells distinctly encode hippocampal feedback, enabling the septum to monitor ongoing patterns of activity in the hippocampus.

    View details for DOI 10.1523/JNEUROSCI.5188-13.2014

    View details for Web of Science ID 000341314900025

    View details for PubMedID 25164672