Education & Certifications


  • B.S., Villanova University Honors Program, Mechanical Engineering:Thermal-Fluid Systems (2016)

Projects


  • Sorption-Enhanced Catalysis of Sabatier Reaction, Chemical Engineering Department, Villanova University (January 1, 2015 - 5/15/2016)

    Experimental research developing and studying efficacy of catalysts with chemisorbants in order to produce methane from greenhouse gas

    Location

    Villanova, PA

  • Heat Transfer Modeling of Green Building, Mechanical Engineering Department, Villanova University (August 30, 2015 - May 15, 2016)

    Developing models to elucidate the effect of utilizing organic building materials on HVAC loads, indoor air temperature etc.

    Location

    Villanova, PA

All Publications


  • Enabling silicon photoanodes for efficient solar water splitting by electroless-deposited nickel NANO RESEARCH Zhao, J., Gill, T., Zheng, X. 2018; 11 (6): 3499–3508
  • Conformal Electroless Nickel Plating on Silicon Wafers, Convex & Concave Pyramids, and Ultralong Nanowires. ACS applied materials & interfaces Gill, T., Zhao, J., Berenschot, E. J., Tas, N., Zheng, X. 2018

    Abstract

    Nickel (Ni) plating has garnered great commercial interest, as it provides excellent hardness, corrosion resistance, and electrical conductivity. Though Ni plating on conducting substrates is commonly employed via electrodeposition, plating on semiconductors and insulators often necessitates electroless approaches. Corresponding plating theory for deposition on planar substrates was developed as early as 1946, but for substrates with micro and nanoscale features, very little is known of the relationships between plating conditions, Ni deposition quality, and substrate morphology. Herein, we describe the general theory of the mechanisms of electroless Ni deposition on semiconducting silicon (Si) substrates, detailing plating bath failures and establishing relationships between critical plating bath parameters and the deposited Ni film quality. Through this theory, we develop two different plating recipes: galvanic displacement (GD) and autocatalytic deposition (ACD). Neither recipe requires pretreatment of the Si substrate and both methods are capable of depositing uniform Ni films on planar Si substrates and convex Si pyramids. In comparison, ACD has better tunability than GD, and it provides more conformal Ni coating on complex and high-aspect ratio Si structures, such as inverse fractal Si pyramids and ultralong Si nanowires. Our methodology and theoretical analyses can be leveraged to develop electroless plating processes for other metals and metal alloys and to generally provide direction for the adaptation of electroless deposition to modern applications.

    View details for DOI 10.1021/acsami.8b06002

    View details for PubMedID 29882649