Professional Education

  • Doctor of Philosophy, Stanford University, CHEM-PHD (2016)
  • PhD, Stanford University, Chemistry (2016)
  • Bachelor of Science, University of California Irvine, Chemistry (2010)

Stanford Advisors

All Publications

  • Organocatalytic Ring-Opening Polymerization of Morpholinones: New Strategies to Functionalized Polyesters JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Blake, T. R., Waymouth, R. M. 2014; 136 (26): 9252-9255


    The oxidative lactonization of N-substituted diethanolamines with the Pd catalyst [LPd(OAc)]2(2+)[OTf(-)]2 generates N-substituted morpholin-2-ones. The organocatalytic ring-opening polymerization of N-acyl morpholin-2-ones occurs readily to generate functionalized poly(aminoesters) with N-acylated amines in the polyester backbone. The thermodynamics of the ring-opening polymerization depends sensitively on the hybridization of the nitrogen of the heterocyclic lactone. N-Acyl morpholin-2-ones polymerize readily to generate polymorpholinones, but the N-aryl or N-alkyl substituted morpholin-2-ones do not polymerize. Experimental and theoretical studies reveal that the thermodynamics of ring opening correlates to the degree of pyramidalization of the endocyclic N-atom. Deprotection of the poly(N-Boc-morpholin-2-one) yields a water-soluble, cationic polymorpholinone.

    View details for DOI 10.1021/ja503830c

    View details for Web of Science ID 000338692700005

    View details for PubMedID 24946200

  • Chemoselective pd-catalyzed oxidation of polyols: synthetic scope and mechanistic studies. Journal of the American Chemical Society Chung, K., Banik, S. M., De Crisci, A. G., Pearson, D. M., Blake, T. R., Olsson, J. V., Ingram, A. J., Zare, R. N., Waymouth, R. M. 2013; 135 (20): 7593-7602


    The regio- and chemoselective oxidation of unprotected vicinal polyols with [(neocuproine)Pd(OAc)]2(OTf)2 (1) (neocuproine = 2,9-dimethyl-1,10-phenanthroline) occurs readily under mild reaction conditions to generate α-hydroxy ketones. The oxidation of vicinal diols is both faster and more selective than the oxidation of primary and secondary alcohols; vicinal 1,2-diols are oxidized selectively to hydroxy ketones, whereas primary alcohols are oxidized in preference to secondary alcohols. Oxidative lactonization of 1,5-diols yields cyclic lactones. Catalyst loadings as low as 0.12 mol % in oxidation reactions on a 10 g scale can be used. The exquisite selectivity of this catalyst system is evident in the chemoselective and stereospecific oxidation of the polyol (S,S)-1,2,3,4-tetrahydroxybutane [(S,S)-threitol] to (S)-erythrulose. Mechanistic, kinetic, and theoretical studies revealed that the rate laws for the oxidation of primary and secondary alcohols differ from those of diols. Density functional theory calculations support the conclusion that β-hydride elimination to give hydroxy ketones is product-determining for the oxidation of vicinal diols, whereas for primary and secondary alcohols, pre-equilibria favoring primary alkoxides are product-determining. In situ desorption electrospray ionization mass spectrometry (DESI-MS) revealed several key intermediates in the proposed catalytic cycle.

    View details for DOI 10.1021/ja4008694

    View details for PubMedID 23659308