Academic Appointments


All Publications


  • A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles CELL STEM CELL Zhang, J. Z., Termglinchan, V., Shao, N., Itzhaki, I., Liu, C., Ma, N., Tian, L., Wang, V. Y., Chang, A. Y., Guo, H., Kitani, T., Wu, H., Lam, C., Kodo, K., Sayed, N., Blau, H. M., Wu, J. C. 2019; 24 (5): 802-+
  • A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles. Cell stem cell Zhang, J. Z., Termglinchan, V., Shao, N., Itzhaki, I., Liu, C., Ma, N., Tian, L., Wang, V. Y., Chang, A. C., Guo, H., Kitani, T., Wu, H., Lam, C. K., Kodo, K., Sayed, N., Blau, H. M., Wu, J. C. 2019

    Abstract

    The diversity of cardiac lineages contributes to the heterogeneity of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs). Here, we report the generation of a hiPSC TBX5Clover2 and NKX2-5TagRFP double reporter to delineate cardiaclineages and isolate lineage-specific subpopulations. Molecular analyses reveal that four different subpopulations can be isolated based on the differential expression of TBX5 and NKX2-5, TBX5+NKX2-5+, TBX5+NKX2-5-, TBX5-NKX2-5+, and TBX5-NKX2-5-, mimicking the first heart field, epicardial, second heart field, and endothelial lineages, respectively. Genetic and functional characterization indicates that each subpopulation differentiates into specific cardiac cells. We further identify CORIN as a cell-surface marker for isolating the TBX5+NKX2-5+ subpopulation and demonstrate the use of lineage-specific CMs for precise drug testing. We anticipate that this tool will facilitate theinvestigation of cardiac lineage specification and isolation of specific cardiac subpopulations for drug screening, tissue engineering, and disease modeling.

    View details for PubMedID 30880024

  • Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature Lee, J., Termglinchan, V., Diecke, S., Itzhaki, I., Lam, C. K., Garg, P., Lau, E., Greenhaw, M., Seeger, T., Wu, H., Zhang, J. Z., Chen, X., Gil, I. P., Ameen, M., Sallam, K., Rhee, J. W., Churko, J. M., Chaudhary, R., Chour, T., Wang, P. J., Snyder, M. P., Chang, H. Y., Karakikes, I., Wu, J. C. 2019

    Abstract

    Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-β (PDGFRB) as a potential therapeutic target.

    View details for DOI 10.1038/s41586-019-1406-x

    View details for PubMedID 31316208

  • Telomere shortening is a hallmark of genetic cardiomyopathies. Proceedings of the National Academy of Sciences of the United States of America Chang, A. C., Chang, A. C., Kirillova, A., Sasagawa, K., Su, W., Weber, G., Lin, J., Termglinchan, V., Karakikes, I., Seeger, T., Dainis, A. M., Hinson, J. T., Seidman, J., Seidman, C. E., Day, J. W., Ashley, E., Wu, J. C., Blau, H. M. 2018

    Abstract

    This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.

    View details for PubMedID 30150400

  • SETD7 Drives Cardiac Lineage Commitment through Stage-Specific Transcriptional Activation. Cell stem cell Lee, J., Shao, N. Y., Paik, D. T., Wu, H., Guo, H., Termglinchan, V., Churko, J. M., Kim, Y., Kitani, T., Zhao, M. T., Zhang, Y., Wilson, K. D., Karakikes, I., Snyder, M. P., Wu, J. C. 2018; 22 (3): 428–44.e5

    Abstract

    Cardiac development requires coordinated and large-scale rearrangements of the epigenome. The roles and precise mechanisms through which specific epigenetic modifying enzymes control cardiac lineage specification, however, remain unclear. Here we show that the H3K4 methyltransferase SETD7 controls cardiac differentiation by reading H3K36 marks independently of its enzymatic activity. Through chromatin immunoprecipitation sequencing (ChIP-seq), we found that SETD7 targets distinct sets of genes to drive their stage-specific expression during cardiomyocyte differentiation. SETD7 associates with different co-factors at these stages, including SWI/SNF chromatin-remodeling factors during mesodermal formation and the transcription factor NKX2.5 in cardiac progenitors to drive their differentiation. Further analyses revealed that SETD7 binds methylated H3K36 in the bodies of its target genes to facilitate RNA polymerase II (Pol II)-dependent transcription. Moreover, abnormal SETD7 expression impairs functional attributes of terminally differentiated cardiomyocytes. Together, these results reveal how SETD7 acts at sequential steps in cardiac lineage commitment, and they provide insights into crosstalk between dynamic epigenetic marks and chromatin-modifying enzymes.

    View details for PubMedID 29499155

  • Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell stem cell Kooreman, N. G., Kim, Y., de Almeida, P. E., Termglinchan, V., Diecke, S., Shao, N. Y., Wei, T. T., Yi, H., Dey, D., Nelakanti, R., Brouwer, T. P., Paik, D. T., Sagiv-Barfi, I., Han, A., Quax, P. H., Hamming, J. F., Levy, R., Davis, M. M., Wu, J. C. 2018

    Abstract

    Cancer cells and embryonic tissues share a number of cellular and molecular properties, suggesting that induced pluripotent stem cells (iPSCs) may be harnessed to elicit anti-tumor responses in cancer vaccines. RNA sequencing revealed that human and murine iPSCs express tumor-associated antigens, and we show here a proof of principle for using irradiated iPSCs in autologous anti-tumor vaccines. In a prophylactic setting, iPSC vaccines prevent tumor growth in syngeneic murine breast cancer, mesothelioma, and melanoma models. As an adjuvant, the iPSC vaccine inhibited melanoma recurrence at the resection site and reduced metastatic tumor load, which was associated with fewer Th17 cells and increased CD11b+GR1himyeloid cells. Adoptive transfer of T cells isolated from vaccine-treated tumor-bearing mice inhibited tumor growth in unvaccinated recipients, indicating that the iPSC vaccine promotes an antigen-specific anti-tumor T cell response. Our data suggest an easy, generalizable strategy for multiple types of cancer that could prove highly valuable in clinical immunotherapy.

    View details for PubMedID 29456158

  • Patient-Specific iPSC-Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in BMPR2 Mutation Carriers CELL STEM CELL Gu, M., Shao, N., Sa, S., Li, D., Termglinchan, V., Ameen, M., Karakikes, I., Sosa, G., Grubert, F., Lee, J., Cao, A., Taylor, S., Ma, Y., Zhao, Z., Chappell, J., Hamid, R., Austin, E. D., Gold, J. D., Wu, J. C., Snyder, M. P., Rabinovitch, M. 2017; 20 (4): 490-?
  • A Comprehensive TALEN-Based Knockout Library for Generating Human Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases. Circulation research Karakikes, I., Termglinchan, V., Cepeda, D. A., Lee, J., Diecke, S., Hendel, A., Itzhaki, I., Ameen, M., Shrestha, R., Wu, H., Ma, N., Shao, N., Seeger, T., Woo, N. A., Wilson, K. D., Matsa, E., Porteus, M. H., Sebastiano, V., Wu, J. C. 2017

    Abstract

    Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome.The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro.By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development.Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.

    View details for DOI 10.1161/CIRCRESAHA.116.309948

    View details for PubMedID 28246128

  • Mending a Broken Heart: The Evolution Of Biological Therapeutics. Stem cells Chen, C., Termglinchan, V., Karakikes, I. 2017

    Abstract

    Heart failure (HF), a common sequela of cardiovascular diseases, remains a staggering clinical problem, associated with high rates of morbidity and mortality worldwide. Advances in pharmacological, interventional, and operative management have improved patient care, but these interventions are insufficient to halt the progression of HF, particularly the end-stage irreversible loss of functional cardiomyocytes. Innovative therapies that could prevent HF progression and improve the function of the failing heart are urgently needed. Following successful preclinical studies, two main strategies have emerged as potential solutions: cardiac gene therapy and cardiac regeneration through stem and precursor cell transplantation. Many potential gene- and cell-based therapies have entered into clinical studies, intending to ameliorate cardiac dysfunction in patients with advanced HF. In this review, we focus on the recent advances in cell- and gene-based therapies in the context of cardiovascular disease, emphasizing the most advanced therapies. The principles and mechanisms of action of gene and cell therapies for HF are discussed along with the limitations of current approaches. Finally, we highlight the emerging technologies that hold promise to revolutionize the biological therapies for cardiovascular diseases. Stem Cells 2017;35:1131-1140.

    View details for DOI 10.1002/stem.2602

    View details for PubMedID 28233392

  • Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro CARDIAC GENE THERAPY: METHODS AND PROTOCOLS Termglinchan, V., Seeger, T., Chen, C., Wu, J. C., Karakikes, I., Ishikawa, K. 2017; 1521: 55–68
  • Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro. Methods in molecular biology (Clifton, N.J.) Termglinchan, V., Seeger, T., Chen, C., Wu, J. C., Karakikes, I. 2017; 1521: 55-68

    Abstract

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

    View details for PubMedID 27910041

  • Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. Journal of the American College of Cardiology Liang, P., Sallam, K., Wu, H., Li, Y., Itzhaki, I., Garg, P., Zhang, Y., Vermglinchan, V., Lan, F., Gu, M., Gong, T., Zhuge, Y., He, C., Ebert, A. D., Sanchez-Freire, V., Churko, J., Hu, S., Sharma, A., Lam, C. K., Scheinman, M. M., Bers, D. M., Wu, J. C. 2016; 68 (19): 2086-2096

    Abstract

    Brugada syndrome (BrS), a disorder associated with characteristic electrocardiogram precordial ST-segment elevation, predisposes afflicted patients to ventricular fibrillation and sudden cardiac death. Despite marked achievements in outlining the organ level pathophysiology of the disorder, the understanding of human cellular phenotype has lagged due to a lack of adequate human cellular models of the disorder.The objective of this study was to examine single cell mechanism of Brugada syndrome using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs).This study recruited 2 patients with type 1 BrS carrying 2 different sodium voltage-gated channel alpha subunit 5 variants as well as 2 healthy control subjects. We generated iPSCs from their skin fibroblasts by using integration-free Sendai virus. We used directed differentiation to create purified populations of iPSC-CMs.BrS iPSC-CMs showed reductions in inward sodium current density and reduced maximal upstroke velocity of action potential compared with healthy control iPSC-CMs. Furthermore, BrS iPSC-CMs demonstrated increased burden of triggered activity, abnormal calcium (Ca(2+)) transients, and beating interval variation. Correction of the causative variant by genome editing was performed, and resultant iPSC-CMs showed resolution of triggered activity and abnormal Ca(2+) transients. Gene expression profiling of iPSC-CMs showed clustering of BrS compared with control subjects. Furthermore, BrS iPSC-CM gene expression correlated with gene expression from BrS human cardiac tissue gene expression.Patient-specific iPSC-CMs were able to recapitulate single-cell phenotype features of BrS, including blunted inward sodium current, increased triggered activity, and abnormal Ca(2+) handling. This novel human cellular model creates future opportunities to further elucidate the cellular disease mechanism and identify novel therapeutic targets.

    View details for DOI 10.1016/j.jacc.2016.07.779

    View details for PubMedID 27810048

  • iPSC-derived cardiomyocytes reveal abnormal TGF-ß signalling in left ventricular non-compaction cardiomyopathy. Nature cell biology Kodo, K., Ong, S., Jahanbani, F., Termglinchan, V., Hirono, K., Inanloorahatloo, K., Ebert, A. D., Shukla, P., Abilez, O. J., Churko, J. M., Karakikes, I., Jung, G., Ichida, F., Wu, S. M., Snyder, M. P., Bernstein, D., Wu, J. C. 2016; 18 (10): 1031-1042

    Abstract

    Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and this was associated with perturbed transforming growth factor beta (TGF-β) signalling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGF-β signalling. TBX20 regulates the expression of TGF-β signalling modifiers including one known to be a genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGF-β signalling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC.

    View details for DOI 10.1038/ncb3411

    View details for PubMedID 27642787

  • Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell stem cell Matsa, E., Burridge, P. W., Yu, K., Ahrens, J. H., Termglinchan, V., Wu, H., Liu, C., Shukla, P., Sayed, N., Churko, J. M., Shao, N., Woo, N. A., Chao, A. S., Gold, J. D., Karakikes, I., Snyder, M. P., Wu, J. C. 2016; 19 (3): 311-325

    Abstract

    Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.

    View details for DOI 10.1016/j.stem.2016.07.006

    View details for PubMedID 27545504

  • Aberrant TGF beta Signaling as an Etiology of Left Ventricular Non-compaction Cardiomyopathy Kodo, K., Ong, S., Jahanbani, F., Termglinchan, V., InanlooRahatloo, K., Ebert, A. D., Shukla, P., Abilez, O. J., Churko, J. M., Karakikes, I., Jung, G., Snyder, M. P., Bernstein, D., Wu, J. C. LIPPINCOTT WILLIAMS & WILKINS. 2015
  • Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Insights Into Molecular, Cellular, and Functional Phenotypes. Circulation research Karakikes, I., Ameen, M., Termglinchan, V., Wu, J. C. 2015; 117 (1): 80-88

    Abstract

    Disease models are essential for understanding cardiovascular disease pathogenesis and developing new therapeutics. The human induced pluripotent stem cell (iPSC) technology has generated significant enthusiasm for its potential application in basic and translational cardiac research. Patient-specific iPSC-derived cardiomyocytes offer an attractive experimental platform to model cardiovascular diseases, study the earliest stages of human development, accelerate predictive drug toxicology tests, and advance potential regenerative therapies. Harnessing the power of iPSC-derived cardiomyocytes could eliminate confounding species-specific and interpersonal variations and ultimately pave the way for the development of personalized medicine for cardiovascular diseases. However, the predictive power of iPSC-derived cardiomyocytes as a valuable model is contingent on comprehensive and rigorous molecular and functional characterization.

    View details for DOI 10.1161/CIRCRESAHA.117.305365

    View details for PubMedID 26089365

  • Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy NATURE COMMUNICATIONS Karakikes, I., Stillitano, F., Nonnenmacher, M., Tzimas, C., Sanoudou, D., Termglinchan, V., Kong, C., Rushing, S., Hansen, J., Ceholski, D., Kolokathis, F., Kremastinos, D., Katoulis, A., Ren, L., Cohen, N., Gho, J. M., Tsiapras, D., Vink, A., Wu, J. C., Asselbergs, F. W., Li, R. A., Hulot, J., Kranias, E. G., Hajjar, R. J. 2015; 6

    View details for DOI 10.1038/ncomms7955

    View details for Web of Science ID 000353704700007

    View details for PubMedID 25923014

  • Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nature communications Karakikes, I., Stillitano, F., Nonnenmacher, M., Tzimas, C., Sanoudou, D., Termglinchan, V., Kong, C., Rushing, S., Hansen, J., Ceholski, D., Kolokathis, F., Kremastinos, D., Katoulis, A., Ren, L., Cohen, N., Gho, J. M., Tsiapras, D., Vink, A., Wu, J. C., Asselbergs, F. W., Li, R. A., Hulot, J., Kranias, E. G., Hajjar, R. J. 2015; 6: 6955-?

    Abstract

    A number of genetic mutations is associated with cardiomyopathies. A mutation in the coding region of the phospholamban (PLN) gene (R14del) is identified in families with hereditary heart failure. Heterozygous patients exhibit left ventricular dilation and ventricular arrhythmias. Here we generate induced pluripotent stem cells (iPSCs) from a patient harbouring the PLN R14del mutation and differentiate them into cardiomyocytes (iPSC-CMs). We find that the PLN R14del mutation induces Ca(2+) handling abnormalities, electrical instability, abnormal cytoplasmic distribution of PLN protein and increases expression of molecular markers of cardiac hypertrophy in iPSC-CMs. Gene correction using transcription activator-like effector nucleases (TALENs) ameliorates the R14del-associated disease phenotypes in iPSC-CMs. In addition, we show that knocking down the endogenous PLN and simultaneously expressing a codon-optimized PLN gene reverses the disease phenotype in vitro. Our findings offer novel strategies for targeting the pathogenic mutations associated with cardiomyopathies.

    View details for DOI 10.1038/ncomms7955

    View details for PubMedID 25923014

  • Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Scientific reports Diecke, S., Lu, J., Lee, J., Termglinchan, V., Kooreman, N. G., Burridge, P. W., Ebert, A. D., Churko, J. M., Sharma, A., Kay, M. A., Wu, J. C. 2015; 5: 8081-?

    Abstract

    The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are relatively inefficient or expensive. The mini-intronic plasmid (MIP) is an alternative, robust transgene expression vector for reprogramming. Here we developed a single plasmid reprogramming system which carries codon-optimized (Co) sequences of the canonical reprogramming factors (Oct4, Klf4, Sox2, and c-Myc) and short hairpin RNA against p53 ("4-in-1 CoMiP"). We have derived human and mouse iPSC lines from fibroblasts by performing a single transfection. Either independently or together with an additional vector encoding for LIN28, NANOG, and GFP, we were also able to reprogram blood-derived peripheral blood mononuclear cells (PBMCs) into iPSCs. Taken together, the CoMiP system offers a new highly efficient, integration-free, easy to use, and inexpensive methodology for reprogramming. Furthermore, the CoMIP construct is color-labeled, free of any antibiotic selection cassettes, and independent of the requirement for expression of the Epstein-Barr Virus nuclear antigen (EBNA), making it particularly beneficial for future applications in regenerative medicine.

    View details for DOI 10.1038/srep08081

    View details for PubMedID 25628230

  • Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Scientific reports Diecke, S., Lu, J., Lee, J., Termglinchan, V., Kooreman, N. G., Burridge, P. W., Ebert, A. D., Churko, J. M., Sharma, A., Kay, M. A., Wu, J. C. 2015; 5: 8081-?

    Abstract

    The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are relatively inefficient or expensive. The mini-intronic plasmid (MIP) is an alternative, robust transgene expression vector for reprogramming. Here we developed a single plasmid reprogramming system which carries codon-optimized (Co) sequences of the canonical reprogramming factors (Oct4, Klf4, Sox2, and c-Myc) and short hairpin RNA against p53 ("4-in-1 CoMiP"). We have derived human and mouse iPSC lines from fibroblasts by performing a single transfection. Either independently or together with an additional vector encoding for LIN28, NANOG, and GFP, we were also able to reprogram blood-derived peripheral blood mononuclear cells (PBMCs) into iPSCs. Taken together, the CoMiP system offers a new highly efficient, integration-free, easy to use, and inexpensive methodology for reprogramming. Furthermore, the CoMIP construct is color-labeled, free of any antibiotic selection cassettes, and independent of the requirement for expression of the Epstein-Barr Virus nuclear antigen (EBNA), making it particularly beneficial for future applications in regenerative medicine.

    View details for DOI 10.1038/srep08081

    View details for PubMedID 25628230

  • Human-induced pluripotent stem cell models of inherited cardiomyopathies. Current opinion in cardiology Karakikes, I., Termglinchan, V., Wu, J. C. 2014; 29 (3): 214-219

    Abstract

    This article provides an overview of the latest advances in in-vitro modeling of inherited cardiomyopathies using human-induced pluripotent stem cells (iPSCs).Inherited cardiomyopathies have been recently modeled by generating iPSCs from patients harboring mutations in genes associated with the pathogenesis of hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy/dysplasia.Patient-specific iPSCs and their differentiated cardiomyocytes (induced pluripotent stem cell-derived cardiomyocytes) now provide a novel model to study the underlying molecular mechanism of the pathogenesis of familial cardiomyopathies as well as for in-vitro drug screening and drug discovery.

    View details for DOI 10.1097/HCO.0000000000000049

    View details for PubMedID 24576884

  • Candidate cancer-targeting agents identified by expression-profiling arrays ONCOTARGETS AND THERAPY Termglinchan, V., Wanichnopparat, W., Suwanwongse, K., Teeyapant, C., Chatpermporn, K., Leerunyakul, K., Chuadpia, K., Sirimaneethum, O., Wijitworawong, P., Mutirangura, W., Aporntewan, C., Vinayanuwattikun, C., Mutirangura, A. 2013; 6: 447-458

    Abstract

    One particularly promising component of personalized medicine in cancer treatment is targeted therapy, which aims to maximize therapeutic efficacy while minimizing toxicity. However, the number of approved targeted agents remains limited. Expression microarray data for different types of cancer are resources to identify genes that were upregulated. The genes are candidate targets for cancer-targeting agents for future anticancer research and targeted treatments.The gene expression profiles of 48 types of cancer from 2,141 microarrays reported in the Gene Expression Omnibus were analyzed. These data were organized into 78 experimental groups, on which we performed comprehensive analyses using two-tailed Student's t-tests with significance set at P < 0.01 to identify genes that were upregulated compared with normal cells in each cancer type. The resulting list of significantly upregulated genes was cross-referenced with three categories of protein inhibitor targets, categorized by inhibitor type ('Targets of US Food and Drug Administration (FDA)-approved anticancer drugs', 'Targets of FDA-approved nonantineoplastic drugs', or 'Targets of non-FDA-approved chemical agents'). Of the 78 experimental groups studied, 57 (73%) represent cancers that are currently treated with FDA-approved targeted treatment agents. However, the target genes for the indicated therapies are upregulated in only 33 of these groups (57%). Nevertheless, the mRNA expression of the genes targeted by FDA-approved treatment agents is increased in every experimental group, including all of the cancers without FDA-approved targeted treatments. Moreover, many targets of protein inhibitors that have been approved by the FDA as therapies for nonneoplastic diseases, such as 3-hydroxy-3-methylglutaryl-CoA reductase and cyclooxygenase-2 and the targets of many non-FDA-approved chemical agents, such as cyclin-dependent kinase 1 and DNA-dependent protein kinase, are also overexpressed in many types of cancer.This research demonstrates a clinical correlation between bioinformatics data and currently approved treatments and suggests novel uses for known protein inhibitors in future antineoplastic research and targeted therapies.

    View details for DOI 10.2147/OTT.S42858

    View details for Web of Science ID 000317892900001

    View details for PubMedID 23637543

    View details for PubMedCentralID PMC3638713