Academic Appointments


  • Phys Sci Res Assoc, Chemistry
  • Postdoctoral Scholar, Stanford Woods Institute for the Environment

All Publications


  • Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nature nanotechnology Zhao, W., Hanson, L., Lou, H., Akamatsu, M., Chowdary, P. D., Santoro, F., Marks, J. R., Grassart, A., Drubin, D. G., Cui, Y., Cui, B. 2017

    Abstract

    Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.

    View details for DOI 10.1038/nnano.2017.98

    View details for PubMedID 28581510

  • Dual-Functional Lipid Coating for the Nanopillar-Based Capture of Circulating Tumor Cells with High Purity and Efficiency LANGMUIR Lou, H., Zhao, W., Hanson, L., Zeng, C., Cui, Y., Cui, B. 2017; 33 (4): 1097-1104

    Abstract

    Clinical studies of circulating tumor cells (CTC) have stringent demands for high capture purity and high capture efficiency. Nanostructured surfaces have been shown to significantly increase the capture efficiency yet suffer from low capture purity. Here we introduce a dual-functional lipid coating on nanostructured surfaces. The lipid coating serves both as an effective passivation layer that helps prevent nonspecific cell adhesion and as a functionalized layer for antibody-based specific cell capture. In addition, the fluidity of lipid bilayers enables antibody clustering that enhances the cell-surface interaction for efficient cell capture. As a result, the lipid-coating method helps promote both the capture efficiency and capture purity of nanostructure-based CTC capture.

    View details for DOI 10.1021/acs.langmuir.6b03903

    View details for Web of Science ID 000393269700032

    View details for PubMedID 28059522

  • Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nature nanotechnology Hanson, L., Zhao, W., Lou, H., Lin, Z. C., Lee, S. W., Chowdary, P., Cui, Y., Cui, B. 2015; 10 (6): 554-562

    Abstract

    The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.

    View details for DOI 10.1038/nnano.2015.88

    View details for PubMedID 25984833

  • Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: crinkling of carbon nanotube films to create subcellular ridges. ACS nano Xie, X., Zhao, W., Lee, H. R., Liu, C., Ye, M., Xie, W., Cui, B., Criddle, C. S., Cui, Y. 2014; 8 (12): 11958-11965

    Abstract

    Biological cells often interact with their local environment through subcellular structures at a scale of tens to hundreds of nanometers. This study investigated whether topographic features fabricated at a similar scale would impact cellular functions by promoting the interaction between subcellular structures and nanomaterials. Crinkling of carbon nanotube films by solvent-induced swelling and shrinkage of substrate resulted in the formation of ridge features at the subcellular scale on both flat and three-dimensional substrates. Biological cells grown upon these crinkled CNT films had enhanced activity: neuronal cells grew to higher density and displayed greater cell polarization; exoelectrogenic micro-organisms transferred electrons more efficiently. The results indicate that crinkling of thin CNT films creates secondary mesoscale features that enhance attachment, growth, and electron transfer.

    View details for DOI 10.1021/nn504898p

    View details for PubMedID 25415858

  • Static Electricity Powered Copper Oxide Nanowire Microbicidal Electroporation for Water Disinfection NANO LETTERS Liu, C., Xie, X., Zhao, W., Yao, J., Kong, D., Boehm, A. B., Cui, Y. 2014; 14 (10): 5603-5608

    View details for DOI 10.1021/nl5020958

    View details for Web of Science ID 000343016400019

  • A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature nanotechnology Liu, N., Lu, Z., Zhao, J., McDowell, M. T., Lee, H., Zhao, W., Cui, Y. 2014; 9 (3): 187-192

    Abstract

    Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm(-2)).

    View details for DOI 10.1038/nnano.2014.6

    View details for PubMedID 24531496

  • Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. Nano letters Liu, C., Xie, X., Zhao, W., Liu, N., Maraccini, P. A., Sassoubre, L. M., Boehm, A. B., Cui, Y. 2013; 13 (9): 4288-4293

    Abstract

    High-efficiency, affordable, and low energy water disinfection methods are in great need to prevent diarrheal illness, which is one of the top five leading causes of death over the world. Traditional water disinfection methods have drawbacks including carcinogenic disinfection byproducts formation, energy and time intensiveness, and pathogen recovery. Here, we report an innovative method that achieves high-efficiency water disinfection by introducing nanomaterial-assisted electroporation implemented by a conducting nanosponge filtration device. The use of one-dimensional (1D) nanomaterials allows electroporation to occur at only several volts, which is 2 to 3 orders of magnitude lower than that in traditional electroporation applications. The disinfection mechanism of electroporation prevents harmful byproduct formation and ensures a fast treatment speed of 15 000 L/(h·m(2)), which is equal to a contact time of 1 s. The conducting nanosponge made from low-cost polyurethane sponge coated with carbon nanotubes and silver nanowires ensures the device's affordability. This method achieves more than 6 log (99.9999%) removal of four model bacteria, including Escherichia coli, Salmonella enterica Typhimirium, Enterococcus faecalis, and Bacillus subtilis, and more than 2 log (99%) removal of one model virus, bacteriophage MS2, with a low energy consumption of only 100 J/L.

    View details for DOI 10.1021/nl402053z

    View details for PubMedID 23987737

  • Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Pan, L., Yu, G., Zhai, D., Lee, H. R., Zhao, W., Liu, N., Wang, H., Tee, B. C., Shi, Y., Cui, Y., Bao, Z. 2012; 109 (24): 9287-9292

    Abstract

    Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (~480 F·g(-1)), unprecedented rate capability, and cycling stability (~83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (~0.3 s) and superior sensitivity (~16.7 μA · mM(-1)). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.

    View details for DOI 10.1073/pnas.1202636109

    View details for Web of Science ID 000305511300024

    View details for PubMedID 22645374