Professional Education


  • Bachelor of Engineering, Tsinghua University (2010)
  • Doctor of Philosophy, Tsinghua University (2016)

All Publications


  • Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities Nature Nanotechnology Yang, A., Zhou, G., et al 2020
  • Transient Voltammetry with Ultramicroelectrodes Reveals the Electron Transfer Kinetics of Lithium Metal Anodes Adv. Energy Lett. Boyle, D., Kong, X., Pei, A., Rudnicki, P., Shi, F., Huang, W., Bao, Z., Qin, J., Cui, Y. 2020; 5: 701-709
  • 'Chromatic' neuronal jamming in a primitive brain Nature Physics Khariton, M., Kong, X., Qin, J., Wang, B. 2020
  • Flow effects on silicate dissolution and ion transport at an aqueous interface. Physical chemistry chemical physics : PCCP Lian, C., Kong, X., Liu, H., Wu, J. 2019

    Abstract

    Flow effects on chemical reactions at a solid-liquid interface are fundamental to diverse technological applications but remain poorly understood from a molecular perspective. In this work, we demonstrate that the coupling between laminar flow and surface chemistry can be adequately described using classical density functional theory for ion distributions near the surface in conjunction with kinetics modeling and the Navier-Stokes equation. In good agreement with recent experiments, we find that flowing of fresh water over a silica surface may result in drastic changes in the rate of silica dissolution and, consequently, the surface charge density and the interfacial structure. A nonlinear streaming current is predicted when the surface reactions are disturbed by a laminar flow.

    View details for DOI 10.1039/c9cp00640k

    View details for PubMedID 30869104