Professional Education


  • Bachelor of Science, Zhongshan University (2010)
  • Master of Science, Zhongshan University (2012)
  • Doctor of Philosophy, Ecole Polytechnique Federale Lausanne (2017)

All Publications


  • Lithium metal stripping beneath the solid electrolyte interphase. Proceedings of the National Academy of Sciences of the United States of America Shi, F., Pei, A., Boyle, D. T., Xie, J., Yu, X., Zhang, X., Cui, Y. 2018

    Abstract

    Lithium stripping is a crucial process coupled with lithium deposition during the cycling of Li metal batteries. Lithium deposition has been widely studied, whereas stripping as a subsurface process has rarely been investigated. Here we reveal the fundamental mechanism of stripping on lithium by visualizing the interface between stripped lithium and the solid electrolyte interphase (SEI). We observed nanovoids formed between lithium and the SEI layer after stripping, which are attributed to the accumulation of lithium metal vacancies. High-rate dissolution of lithium causes vigorous growth and subsequent aggregation of voids, followed by the collapse of the SEI layer, i.e., pitting. We systematically measured the lithium polarization behavior during stripping and find that the lithium cation diffusion through the SEI layer is the rate-determining step. Nonuniform sites on typical lithium surfaces, such as grain boundaries and slip lines, greatly accelerated the local dissolution of lithium. The deeper understanding of this buried interface stripping process provides beneficial clues for future lithium anode and electrolyte design.

    View details for DOI 10.1073/pnas.1806878115

    View details for PubMedID 30082382