All Publications

  • A Universal Platform for Fabricating Organic Electrochemical Devices ADVANCED ELECTRONIC MATERIALS Duong, D. T., Tuchman, Y., Chakthranont, P., Cavassin, P., Colucci, R., Jaramillo, T. F., Salleo, A., Faria, G. C. 2018; 4 (7)
  • Network overload due to massive attacks PHYSICAL REVIEW E Kornbluth, Y., Barach, G., Tuchman, Y., Kadish, B., Cwilich, G., Buldyrev, S. 2018; 97 (5): 052309


    We study the cascading failure of networks due to overload, using the betweenness centrality of a node as the measure of its load following the Motter and Lai model. We study the fraction of survived nodes at the end of the cascade p_{f} as a function of the strength of the initial attack, measured by the fraction of nodes p that survive the initial attack for different values of tolerance α in random regular and Erdös-Renyi graphs. We find the existence of a first-order phase-transition line p_{t}(α) on a p-α plane, such that if pp_{t}, p_{f} is large and the giant component of the network is still present. Exactly at p_{t}, the function p_{f}(p) undergoes a first-order discontinuity. We find that the line p_{t}(α) ends at a critical point (p_{c},α_{c}), in which the cascading failures are replaced by a second-order percolation transition. We find analytically the average betweenness of nodes with different degrees before and after the initial attack, we investigate their roles in the cascading failures, and we find a lower bound for p_{t}(α). We also study the difference between localized and random attacks.

    View details for DOI 10.1103/PhysRevE.97.052309

    View details for Web of Science ID 000433068100002

    View details for PubMedID 29906843