Professional Education


  • Doctor of Philosophy, Stockholms Universitet (2016)
  • Master of Science, Stockholms Universitet (2011)
  • Bachelor of Science, Stockholms Universitet (2006)

All Publications


  • Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell host & microbe Sinha, S. R., Haileselassie, Y., Nguyen, L. P., Tropini, C., Wang, M., Becker, L. S., Sim, D., Jarr, K., Spear, E. T., Singh, G., Namkoong, H., Bittinger, K., Fischbach, M. A., Sonnenburg, J. L., Habtezion, A. 2020

    Abstract

    Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration.

    View details for DOI 10.1016/j.chom.2020.01.021

    View details for PubMedID 32101703

  • Mass cytometry reveals systemic and local immune signatures that distinguish inflammatory bowel diseases. Nature communications Rubin, S. J., Bai, L., Haileselassie, Y., Garay, G., Yun, C., Becker, L., Streett, S. E., Sinha, S. R., Habtezion, A. 2019; 10 (1): 2686

    Abstract

    Inflammatory bowel disease (IBD) includes Crohn's disease and ulcerative colitis. Each disease is characterized by a diverse set of potential manifestations, which determine patients' disease phenotype. Current understanding of phenotype determinants is limited, despite increasing prevalence and healthcare costs. Diagnosis and monitoring of disease requires invasive procedures, such as endoscopy and tissue biopsy. Here we report signatures of heterogeneity between disease diagnoses and phenotypes. Using mass cytometry, we analyze leukocyte subsets, characterize their function(s), and examine gut-homing molecule expression in blood and intestinal tissue from healthy and/or IBD subjects. Some signatures persist in IBD despite remission, and many signatures are highly represented by leukocytes that express gut trafficking molecules. Moreover, distinct systemic and local immune signatures suggest patterns of cell localization in disease. Our findings highlight the importance of gut tropic leukocytes in circulation and reveal that blood-based immune signatures differentiate clinically relevant subsets of IBD.

    View details for DOI 10.1038/s41467-019-10387-7

    View details for PubMedID 31217423

  • Age-Related Changes inGut Microbiota AlterPhenotype of Muscularis Macrophages and Disrupt Gastrointestinal Motility. Cellular and molecular gastroenterology and hepatology Becker, L., Spear, E. T., Sinha, S. R., Haileselassie, Y., Habtezion, A. 2019; 7 (1): 243

    View details for PubMedID 30585161