Professional Education


  • Doctor of Philosophy, Chinese Academy Of Sciences (2014)
  • Bachelor of Science, Zhongshan University (2009)

Stanford Advisors


All Publications


  • Molecular imaging of biological systems with a clickable dye in the broad 800-to 1,700-nm near-infrared window PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Zhu, S., Yang, Q., Antaris, A. L., Yue, J., Ma, Z., Wang, H., Huang, W., Wan, H., Wang, J., Diao, S., Zhang, B., Li, X., Zhong, Y., Yu, K., Hong, G., Luo, J., Liang, Y., Dai, H. 2017; 114 (5): 962-967

    Abstract

    Fluorescence imaging multiplicity of biological systems is an area of intense focus, currently limited to fluorescence channels in the visible and first near-infrared (NIR-I; ∼700-900 nm) spectral regions. The development of conjugatable fluorophores with longer wavelength emission is highly desired to afford more targeting channels, reduce background autofluorescence, and achieve deeper tissue imaging depths. We have developed NIR-II (1,000-1,700 nm) molecular imaging agents with a bright NIR-II fluorophore through high-efficiency click chemistry to specific molecular antibodies. Relying on buoyant density differences during density gradient ultracentrifugation separations, highly pure NIR-II fluorophore-antibody conjugates emitting ∼1,100 nm were obtained for use as molecular-specific NIR-II probes. This facilitated 3D staining of ∼170-μm histological brain tissues sections on a home-built confocal microscope, demonstrating multicolor molecular imaging across both the NIR-I and NIR-II windows (800-1,700 nm).

    View details for DOI 10.1073/pnas.1617990114

    View details for Web of Science ID 000393196300063

    View details for PubMedID 28096386

    View details for PubMedCentralID PMC5293099

  • Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window. Advanced materials Yang, Q., Ma, Z., Wang, H., Zhou, B., Zhu, S., Zhong, Y., Wang, J., Wan, H., Antaris, A., Ma, R., Zhang, X., Yang, J., Zhang, X., Sun, H., Liu, W., Liang, Y., Dai, H. 2017

    Abstract

    A new design for second near-infrared window (NIR-II) molecular fluorophores based on a shielding unit-donor-acceptor-donor-shielding unit (S-D-A-D-S) structure is reported. With 3,4-ethylenedioxy thiophene as the donor and fluorene as the shielding unit, the best performance fluorophores IR-FE and IR-FEP exhibit an emission quantum yield of 31% in toluene and 2.0% in water, respectively, representing the brightest organic dyes in NIR-II region reported so far.

    View details for DOI 10.1002/adma.201605497

    View details for PubMedID 28117499

  • Energy Migration Engineering of Bright Rare-Earth Upconversion Nanoparticles for Excitation by Light-Emitting Diodes ADVANCED MATERIALS Zhong, Y., Rostami, I., Wang, Z., Dai, H., Hu, Z. 2015; 27 (41): 6418-?