Professional Education
-
Bachelor of Science, Peking University (2013)
-
Doctor of Philosophy, University of California Berkeley (2018)
All Publications
-
An optimized bioluminescent substrate for non-invasive imaging in the brain.
Nature chemical biology
2023
Abstract
Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.
View details for DOI 10.1038/s41589-023-01265-x
View details for PubMedID 36759751
-
Non-invasive bioluminescent imaging of kinase inhibition in mouse brain
WILEY. 2023
View details for Web of Science ID 000927844900129
-
Brightening up Biology: Advances in Luciferase Systems for in Vivo Imaging.
ACS chemical biology
2021
Abstract
Bioluminescence imaging (BLI) using luciferase reporters is an indispensable method for the noninvasive visualization of cell populations and biochemical events in living animals. BLI is widely performed with preclinical rodent models to understand disease processes and evaluate potential cell- or gene-based therapies. However, in vivo BLI remains constrained by low photon production and tissue attenuation, limiting the sensitivity of reporting from small numbers of cells in deep locations and hindering its application to larger animal models. This Review highlights recent advances in the development of luciferase systems that improve the sensitivity of in vivo BLI and discusses the expanding array of biological applications.
View details for DOI 10.1021/acschembio.1c00549
View details for PubMedID 34780699
-
Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals.
Nature methods
2020
Abstract
Sensitive detection of two biological events in vivo has long been a goal in bioluminescence imaging. Antares, a fusion of the luciferase NanoLuc to the orange fluorescent protein CyOFP, has emerged as a bright bioluminescent reporter with orthogonal substrate specificity to firefly luciferase (FLuc) and its derivatives such as AkaLuc. However, the brightness of Antares in mice is limited by the poor solubility and bioavailability of the NanoLuc substrate furimazine. Here, we report a new substrate, hydrofurimazine, whose enhanced aqueous solubility allows delivery of higher doses to mice. In the liver, Antares with hydrofurimazine exhibited similar brightness to AkaLuc with its substrate AkaLumine. Further chemical exploration generated a second substrate, fluorofurimazine, with even higher brightness in vivo. We used Antares with fluorofurimazine to track tumor size and AkaLuc with AkaLumine to visualize CAR-T cells within the same mice, demonstrating the ability to perform two-population imaging with these two luciferase systems.
View details for DOI 10.1038/s41592-020-0889-6
View details for PubMedID 32661427
-
RNA-based fluorescent biosensors for live cell imaging of small molecules and RNAs.
Current opinion in biotechnology
2020; 63: 157–66
Abstract
Genetically encodable fluorescent biosensors provide spatiotemporal information on their target analytes in a label-free manner, which has enabled the study of cell biology and signaling in living cells. Over the past three decades, fueled by the development of a wide palette of fluorescent proteins, protein-based fluorescent biosensors against a broad array of targets have been developed. Recently, with the development of fluorogenic RNA aptamer-dye pairs that function in live cells, RNA-based fluorescent (RBF) biosensors have emerged as a complementary class of biosensors. Here we review the current state-of-the-art for fluorogenic RNA aptamers and RBF biosensors for imaging small molecules and RNAs, and highlight some emerging opportunities.
View details for DOI 10.1016/j.copbio.2020.01.001
View details for PubMedID 32086101
-
Novel NanoLuc substrates enable bright and sustained bioluminescence imaging in animals
AMER CHEMICAL SOC. 2019
View details for Web of Science ID 000525055501262