Education & Certifications

  • M.S., Stanford University, Materials Science and Engineering (2017)
  • M.S., University of Michigan, Mechanical Engineering (2016)
  • B.E., Xi’an Jiaotong University (Xi’an, China), Special Class for the Gifted Young and Mechanical Engineering (2013)

Stanford Advisors

All Publications

  • Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science advances Oh, J. Y., Son, D., Katsumata, T., Lee, Y., Kim, Y., Lopez, J., Wu, H., Kang, J., Park, J., Gu, X., Mun, J., Wang, N. G., Yin, Y., Cai, W., Yun, Y., Tok, J. B., Bao, Z. 2019; 5 (11): eaav3097


    Skin-like sensory devices should be stretchable and self-healable to meet the demands for future electronic skin applications. Despite recent notable advances in skin-inspired electronic materials, it remains challenging to confer these desired functionalities to an active semiconductor. Here, we report a strain-sensitive, stretchable, and autonomously self-healable semiconducting film achieved through blending of a polymer semiconductor and a self-healable elastomer, both of which are dynamically cross-linked by metal coordination. We observed that by controlling the percolation threshold of the polymer semiconductor, the blend film became strain sensitive, with a gauge factor of 5.75 * 105 at 100% strain in a stretchable transistor. The blend film is also highly stretchable (fracture strain, >1300%) and autonomously self-healable at room temperature. We proceed to demonstrate a fully integrated 5 * 5 stretchable active-matrix transistor sensor array capable of detecting strain distribution through surface deformation.

    View details for DOI 10.1126/sciadv.aav3097

    View details for PubMedID 31723597

  • Environmentally assisted crack growth in adhesively bonded composite joints COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING Tracy, J., Yin, Y., Yang, J., Osborne, J. C., Blohowiak, K. Y., Dauskardt, R. 2017; 102: 368–77