All Publications

  • Collagen Gels Crosslinked by Photoactivation of Riboflavin for the Repair and Regeneration of Corneal Defects. ACS applied bio materials Fernandes-Cunha, G. M., Brunel, L. G., Arboleda, A., Manche, A., Seo, Y. A., Logan, C., Chen, F., Heilshorn, S. C., Myung, D. 2023


    Bioengineered corneal tissue is a promising therapeutic modality for the treatment of corneal blindness as a substitute for cadaveric graft tissue. In this study, we fabricated a collagen gel using ultraviolet-A (UV-A) light and riboflavin as a photosensitizer (PhotoCol-RB) as an in situ-forming matrix to fill corneal wounds and create a cohesive interface between the crosslinked gel and adjacent collagen. The PhotoCol-RB gels supported corneal epithelialization and exhibited higher transparency compared to physically crosslinked collagen. We showed that different riboflavin concentrations yielded gels with different mechanical and biological properties. In vitro experiments using human corneal epithelial cells (hCECs) showed that hCECs are able to proliferate on the gel and express corneal cell markers such as cytokeratin 12 (CK12) and tight junctions (ZO-1). Using an ex vivo burst assay, we also showed that the PhotoCol-RB gels are able to seal corneal perforations. Ex vivo organ culture of the gels filling lamellar keratectomy wounds showed that the epithelium that regenerated over the PhotoCol-RB gels formed a multilayer compared to just a double layer for those that grew over physically cross-linked collagen. These gels can be formed either in situ directly on the wound site to conform to the geometry of a defect, or can be preformed and then applied to the corneal wound. Our results indicate that PhotoCol-RB gels merit further investigation as a way to stabilize and repair deep and perforating corneal wounds.

    View details for DOI 10.1021/acsabm.3c00015

    View details for PubMedID 37126648

  • In Situ-Forming Collagen-Hyaluronate Semi-Interpenetrating Network Hydrogel Enhances Corneal Defect Repair. Translational vision science & technology Chen, F., Mundy, D. C., Le, P., Seo, Y. A., Logan, C. M., Fernandes-Cunha, G. M., Basco, C. A., Myung, D. 2022; 11 (10): 22


    Purpose: Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine.Methods: The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA). Gelation time and the mechanical, optical, swelling, and degradation properties of the SIPN were assessed. Cytocompatibility with human corneal epithelial cells and corneal stromal stem cells (CSSCs) was determined in vitro, as was the spatial distribution of encapsulated CSSCs within the SIPN. In vivo wound healing was evaluated by multimodal imaging in an anterior lamellar keratectomy injury model in rabbits, followed by immunohistochemical analysis of treated and untreated tissues.Results: The collagen-hyaluronate SIPN formed in situ without an external energy source and demonstrated mechanical and optical properties similar to the cornea. It was biocompatible with human corneal cells, enhancing CSSC viability when compared with collagen gel controls and preventing encapsulated CSSC sedimentation. In vivo application of the SIPN significantly reduced stromal defect size compared with controls after 7 days and promoted multilayered epithelial regeneration.Conclusions: This in situ-forming SIPN hydrogel may be a promising alternative to keratoplasty and represents a step toward expanding treatment options for patients suffering from corneal injury.Translational Relevance: We detail the synthesis and initial characterization of an SIPN hydrogel as a potential alternative to lamellar keratoplasty and a tunable platform for further development in corneal tissue engineering and therapeutic cell delivery.

    View details for DOI 10.1167/tvst.11.10.22

    View details for PubMedID 36239965

  • Hyaluronic acid hydrogels crosslinked via blue light-induced thiol-ene reaction for the treatment of rat corneal alkali burn. Regenerative therapy Park, S. K., Ha, M., Kim, E. J., Seo, Y. A., Lee, H. J., Myung, D., Kim, H., Na, K. 2022; 20: 51-60


    To assess corneal inflammation from alkali chemical burns, we examined the therapeutic effects of in situ-forming hyaluronic acid (HA) hydrogels crosslinked via blue light-induced thiol-ene reaction on a rat corneal alkali burn model. Animals were divided into three groups (n=7 rats per group): untreated, treated with 0.1% HA eye drops, and treated with crosslinked HA hydrogels. Crosslinking of HA hydrogel followed by the administration of HA eye drops and crosslinked HA hydrogels were carried out once a day from days 0-4. Corneal re-epithelialization, opacity, neovascularization, thickness, and histology were evaluated to compare the therapeutic effects of the three groups. Further investigation was conducted on the transparency of HA hydrogels to acquire the practical capabilities of hydrogel as a reservoir for drug delivery. Compared to untreated animals, animals treated with crosslinked HA hydrogels exhibited greater corneal re-epithelialization on days 1, 2, 4, and 7 post-injury (p=0.004, p=0.007, p=0.008, and p=0.034, respectively) and the least corneal neovascularization (p=0.008). Histological analysis revealed lower infiltration of stromal inflammatory cells and compact collagen structure in crosslinked HA hydrogel-treated animals than in untreated animals. These findings corresponded with immunohistochemical analyses indicating that the expression of inflammatory markers such as alpha-SMA, MMP9, and IL1-beta was lower in animals treated with crosslinked HA hydrogels than untreated animals and animals treated only with 0.1% HA eye drops. With beneficial pharmacological effects such as re-epithelization and anti-inflammation, in situ-forming hyaluronic acid (HA) hydrogels may be a promising approach to effective drug delivery in cases of corneal burn injuries.

    View details for DOI 10.1016/j.reth.2022.03.005

    View details for PubMedID 35402662

  • Epidermal growth factor-loaded collagen gels to enhance corneal wound healing: Effect of matrix crosslinking chemistry Seo, Y., Rogers, G., Myung, D. ASSOC RESEARCH VISION OPHTHALMOLOGY INC. 2022
  • Biocompatibility of photoactivated collagen-riboflavin hydrogels for corneal regeneration Arboleda, A., Cunha, G., Manche, A., Seo, Y., Logan, C., Heilshorn, S. C., Myung, D. ASSOC RESEARCH VISION OPHTHALMOLOGY INC. 2022
  • Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy Na, K., Fernandes-Cunha, G. M., Varela, I. B., Lee, H. J., Seo, Y. A., Myung, D. 2021


    BACKGROUND AIMS: Corneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs.METHODS: Human MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels.RESULTS: All corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels.CONCLUSIONS: PEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.

    View details for DOI 10.1016/j.jcyt.2021.02.001

    View details for PubMedID 33752960

  • Encapsulation of Corneal Stromal Stem Cells within Supramolecular Host-Guest Hyaluronic Acid Gels Seo, Y., Chen, K., Fernandes-Cunha, G., Jung, S., Lee, G., Hahn, S., Djalilian, A. R., Jabbehdari, S., Myung, D. ASSOC RESEARCH VISION OPHTHALMOLOGY INC. 2020