Yue Jiang
Ph.D. Student in Mechanical Engineering, admitted Autumn 2018
All Publications
-
Ultrahigh Doping of Graphene Using Flame-Deposited MoO3
IEEE ELECTRON DEVICE LETTERS
2020; 41 (10): 1592–95
View details for DOI 10.1109/LED.2020.3018485
View details for Web of Science ID 000573814300034
-
Enhancing combustion performance of nano-Al/PVDF composites with beta-PVDF
COMBUSTION AND FLAME
2020; 219: 467–77
View details for DOI 10.1016/j.combustflame.2020.06.011
View details for Web of Science ID 000564899700003
-
On-demand production of hydrogen by reacting porous silicon nanowires with water
NANO RESEARCH
2020
View details for DOI 10.1007/s12274-020-2734-8
View details for Web of Science ID 000521006500001
-
Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion.
ACS applied materials & interfaces
2020
Abstract
Metal combustion reaction is highly exothermic and is used in energetic applications, such as propulsion, pyrotechnics, powering micro- and nano-devices, and nanomaterials synthesis. Aluminum (Al) is attracting great interest in those applications because of its high energy density, earth abundance, and low toxicity. Nevertheless, Al combustion is hard to initiate and progresses slowly and incompletely. On the other hand, ultrathin carbon nanomaterials, such as graphene, graphene oxide (GO), and graphene fluoride (GF), can also undergo exothermic reactions. Herein, we demonstrate that the mixture of GO and GF significantly improves the performance of Al combustion as interactions between GO and GF provide heat and radicals to accelerate Al oxidation. Our experiments and reactive molecular dynamics simulation reveal that GO and GF have strong chemical and thermal couplings through radical reactions and heat released from their oxidation reactions. GO facilitates the dissociation of GF, and GF accelerates the disproportionation and oxidation of GO. When the mixture of GO and GF is added to micron-sized Al particles, their synergistic couplings generate reactive oxidative species, such as CF x and CF x O y , and heat, which greatly accelerates Al combustion. This work demonstrates a new area of using synergistic couplings between ultrathin carbon nanomaterials to accelerate metal combustion and potentially oxidation reactions of other materials.
View details for DOI 10.1021/acsami.9b20397
View details for PubMedID 31950820
-
Experimental effective metal oxides to enhance boron combustion
COMBUSTION AND FLAME
2019; 205: 278–85
View details for DOI 10.1016/j.combustflame.2019.04.018
View details for Web of Science ID 000471742000026
-
Modified Micro-Emulsion Synthesis of Highly Dispersed Al/PVDF Composites with Enhanced Combustion Properties
ADVANCED ENGINEERING MATERIALS
2019; 21 (5)
View details for DOI 10.1002/adem.201801330
View details for Web of Science ID 000473099800022
-
Tuning the morphological, ignition and combustion properties of micron-Al/CuO thermites through different synthesis approaches
COMBUSTION AND FLAME
2018; 195: 303–10
View details for DOI 10.1016/j.combustflame.2018.04.028
View details for Web of Science ID 000440118500027
-
Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy
Carbon
2018; 130: 333-339
View details for DOI 10.1016/j.carbon.2018.01.037
-
Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites.
ACS nano
2018
Abstract
Optical ignition of solid energetic materials, which can rapidly release heat, gas, and thrust, is still challenging due to the limited light absorption and high ignition energy of typical energetic materials ( e.g., aluminum, Al). Here, we demonstrated that the optical ignition and combustion properties of micron-sized Al particles were greatly enhanced by adding only 20 wt % of graphene oxide (GO). These enhancements are attributed to the optically activated disproportionation and oxidation reactions of GO, which release heat to initiate the oxidization of Al by air and generate gaseous products to reduce the agglomeration of the composites and promote the pressure rise during combustion. More importantly, compared to conventional additives such as metal oxides nanoparticles ( e.g., WO3 and Bi2O3), GO has much lower density and therefore could improve energetic properties without sacrificing Al content. The results from Xe flash ignition and laser-based excitation experiments demonstrate that GO is an efficient additive to improve the energetic performance of micron-sized Al particles, enabling micron-sized Al to be ignited by optical activation and promoting the combustion of Al in air.
View details for DOI 10.1021/acsnano.8b06217
View details for PubMedID 30335365
-
Electroless Deposition and Ignition Properties of Si/Fe2O3 Core/Shell Nanothermites.
ACS omega
2017; 2 (7): 3596–3600
Abstract
Thermite, a composite of metal and metal oxide, finds wide applications in power and thermal generation systems that require high-energy density. Most of the researches on thermites have focused on using aluminum (Al) particles as the fuel. However, Al particles are sensitive to electrostatic discharge, friction, and mechanical impact, imposing a challenge for the safe handling and storage of Al-based thermites. Silicon (Si) is another attractive fuel for thermites because of its high-energy content, thin native oxide layer, and facile surface functionality. Several studies showed that the combustion properties of Si-based thermites are comparable to those of Al-based thermites. However, little is known about the ignition properties of Si-based thermites. In this work, we determined the reaction onset temperatures of mechanically mixed (MM) Si/Fe2O3 nanothermites and Si/Fe2O3 core/shell (CS) nanothermites using differential scanning calorimetry. The Si/Fe2O3 CS nanothermites were prepared by an electroless deposition method. We found that the Si/Fe2O3 CS nanoparticles (NPs) had a lower reaction onset temperature (∼550 °C) than the MM Si/Fe2O3 nanothermites (>650 °C). The onset temperature of the Si/Fe2O3 CS nanothermites is also insensitive to the size of the Si core NP. These results indicate that the interfacial contact quality between Si and Fe2O3 is the dominant factor for determining the ignition properties of thermites. Finally, the reaction onset temperature of the Si/Fe2O3 CS NPs is comparable to that of the commonly used Al-based nanothermites, suggesting that Si is an attractive fuel for thermites.
View details for DOI 10.1021/acsomega.7b00652
View details for PubMedID 31457677
View details for PubMedCentralID PMC6641388