All Publications

  • Synthesis of Contorted Polycyclic Conjugated Hydrocarbons via Regioselective Activation of Cyclobutadienoids. Journal of the American Chemical Society Yin, X., Zheng, K., Jin, Z., Horst, M., Xia, Y. 2022


    Contorted carbon structures have drawn much attention in the past decade for their rich three-dimensional geometries, enhanced solubility, and tunable electronic properties. We report a modular method to synthesize contorted polycyclic conjugated hydrocarbons containing helical moieties in controlled topologies. This strategy leverages our previously reported streamlined synthesis of pi-systems containing four-membered cyclobutadienoids (CBDs), whose catalyzed cycloaddition with alkynes affords helical structures. Interestingly, we observed exclusive nonbay region regioselectivity in the C-C bond activation of CBDs in our system, which is opposite to the scarce previous examples of [N]phenylene activation that led to the formation of linear phenacene structures. The quantitative and regioselective nonbay region alkyne cycloaddition yielded a variety of helical carbon structures with their topologies predetermined by the CBD-containing precursor hydrocarbons. The cycloaddition can be inhibited by methyl substituents exocyclic to the four-membered ring, thus allowing selective activation of only certain desired CBD units while leaving the others intact. Calculation elucidated the basis for the observed regioselectivity. The described method provides a new route to multihelical aromatic hydrocarbons with complex yet defined geometries, facilitating the further exploration of such fascinating carbon structures.

    View details for DOI 10.1021/jacs.2c02457

    View details for PubMedID 35793470