Evan O'Brien
Postdoctoral Scholar, Molecular and Cellular Physiology
Professional Education
-
B.S., University of Pittsburgh, Biochemistry & Chemistry (2012)
-
Doctor of Philosophy, University of Pennsylvania (2018)
All Publications
-
Negative allosteric modulation of the glucagon receptor by RAMP2.
Biophysical journal
2023; 122 (3S1): 161a
View details for DOI 10.1016/j.bpj.2022.11.1023
View details for PubMedID 36782752
-
Structural insights into differences in G protein activation by family A and family B GPCRs.
Science (New York, N.Y.)
2020; 369 (6503)
Abstract
Family B heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) play important roles in carbohydrate metabolism. Recent structures of family B GPCR-Gs protein complexes reveal a disruption in the α-helix of transmembrane segment 6 (TM6) not observed in family A GPCRs. To investigate the functional impact of this structural difference, we compared the structure and function of the glucagon receptor (GCGR; family B) with the β2 adrenergic receptor (β2AR; family A). We determined the structure of the GCGR-Gs complex by means of cryo-electron microscopy at 3.1-angstrom resolution. This structure shows the distinct break in TM6. Guanosine triphosphate (GTP) turnover, guanosine diphosphate release, GTP binding, and G protein dissociation studies revealed much slower rates for G protein activation by the GCGR compared with the β2AR. Fluorescence and double electron-electron resonance studies suggest that this difference is due to the inability of agonist alone to induce a detectable outward movement of the cytoplasmic end of TM6.
View details for DOI 10.1126/science.aba3373
View details for PubMedID 32732395
-
Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy.
Angewandte Chemie (International ed. in English)
2020
Abstract
For a variety of reasons, the internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side chain dynamics of the 7-transmembrane helix protein sensory rhodopsin II and the beta-barrel bacterial outer membrane channel protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Though of quite different topologies, both proteins are found to have a similar and striking distribution of methyl-bearing amino acid side chain motion that is independent of membrane mimetic. The methyl-bearing side chains of both proteins are, on average, more dynamic in the ps-ns time regime than any soluble protein characterized to date. Approximately one third of methyl-bearing side chains in both proteins exhibit extreme rotameric averaging on this timescale. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect that normally stabilizes the folded state of water-soluble proteins. Furthermore, the large reservoir of conformational entropy that is observed provides the potential to greatly influence the thermodynamics underlying a plethora of membrane protein functions including ligand binding, allostery and signaling.
View details for DOI 10.1002/anie.202003527
View details for PubMedID 32277554