Honors & Awards


  • Thesis award in Biological Sciences I, Brazilian funding agency CAPES (2022)

Professional Education


  • PhD., Universidade Federal do Rio Grande do Sul, Genetics and Molecular Biology (2021)
  • M.Sc., Universidade Federal do Rio Grande do Sul, Genetics and Molecular Biology (2017)
  • B.Sc, Universidade Federal do Rio Grande do Sul, Biomedicine (2015)

Stanford Advisors


Lab Affiliations


All Publications


  • Experience of the NPC Brazil Network with a Comprehensive Program for the Screening and Diagnosis of Niemann-Pick Disease Type C INTERNATIONAL JOURNAL OF NEONATAL SCREENING Kubaski, F., Burlina, A., Polo, G., Pereira, D., Herbst, Z. M., Silva, C., Trapp, F. B., Michelin-Tirelli, K., Lopes, F. F., Burin, M. G., Brusius-Facchin, A., Netto, A. O., Faqueti, L., Iop, G. D., Poletto, E., Giugliani, R. 2022; 8 (3)

    Abstract

    Niemann-Pick disease type C (NPC) is a lysosomal disorder caused by impaired cholesterol metabolism. Levels of lysosphingomyelin 509 (LysoSM509) have been shown elevated in dried blood spots (DBS) of NPC and acid sphingomyelinase deficiency patients. In this study, we report our experience using a two-tier approach (1st tier is the quantification of lysoSM509 by ultra-performance liquid chromatography tandem mass spectrometry followed by the 2nd tier with next-generation sequencing of the NPC1 and NPC2 genes). DBS samples from 450 suspected patients were received by the NPC Brazil network. Of these, 33 samples had elevated levels of lysoSM509, and in 25 of them, variants classified as pathogenic, likely pathogenic, or of unknown significance were identified in the NPC1 or NPC2 genes by next-generation sequencing. The quantification of lysoSM509 in DBS as a first-tier test for the diagnosis of NPC followed by molecular analysis of the NPC1 and NPC2 genes almost doubled the detection rate when compared to the performance of chitotriosidase activity as a first-tier biomarker, and it could likely be increased with the addition of a third tier with MLPA of the two genes involved. This strategy seems suitable for the neonatal screening (NBS) of NPC if this disease is eventually adopted by NBS programs.

    View details for DOI 10.3390/ijns8030039

    View details for Web of Science ID 000858300700001

    View details for PubMedID 35892469

    View details for PubMedCentralID PMC9326630

  • Improved engraftment and therapeutic efficacy by human genome-edited hematopoietic stem cells with Busulfan-based myeloablation. Molecular therapy. Methods & clinical development Poletto, E., Colella, P., Pimentel Vera, L. N., Khan, S., Tomatsu, S., Baldo, G., Gomez-Ospina, N. 2022; 25: 392-409

    Abstract

    Autologous hematopoietic stem cell transplantation using genome-edited cells can become a definitive therapy for hematological and non-hematological disorders with neurological involvement. Proof-of-concept studies using human genome-edited hematopoietic stem cells have been hindered by the low efficiency of engraftment of the edited cells in the bone marrow and their modest efficacy in the CNS. To address these challenges, we tested a myeloablative conditioning regimen based on Busulfan in an immunocompromised model of mucopolysaccharidosis type 1. Compared with sub-lethal irradiation, Busulfan conditioning enhanced the engraftment of edited CD34+ cells in the bone marrow, as well the long-term homing and survival of bone-marrow-derived cells in viscera, and in the CNS, resulting in higher transgene expression and biochemical correction in these organs. Edited cell selection using a clinically compatible marker resulted in a population withlow engraftment potential. We conclude that conditioning can impact the engraftment of edited hematopoietic stem cells.Furthermore, Busulfan-conditioned recipients have a higher expression of therapeutic proteins in target organs, particularly in the CNS, constituting a better conditioning approach for non-hematological diseases with neurological involvement.

    View details for DOI 10.1016/j.omtm.2022.04.009

    View details for PubMedID 35573043

  • Genome Editing for Mucopolysaccharidoses. International journal of molecular sciences Poletto, E. n., Baldo, G. n., Gomez-Ospina, N. n. 2020; 21 (2)

    Abstract

    Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases. Though we still await proof of efficacy in humans, the therapeutic tools established for these two diseases should pave the way for other mucopolysaccharidoses. Herein, we review the current preclinical and clinical development studies, using genome editing as a therapeutic approach for these diseases. The development of new genome editing platforms and the variety of genetic modifications possible with each tool provide potential applications of genome editing for mucopolysaccharidoses, which vastly exceed the potential of current approaches. We expect that in a not-so-distant future, more genome editing-based strategies will be established, and individual diseases will be treated through multiple approaches.

    View details for DOI 10.3390/ijms21020500

    View details for PubMedID 31941077

  • Engineering monocyte/macrophage−specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing Nature Communications Scharenberg, S. G., Poletto, E., Lucot, K. L., Colella, P., Sheikali, A., Montine, T. J., Porteus, M. H., Gomez-Ospina, N. 2020; 11: 1-14