Professional Education


  • Bachelor of Technology, KL University, India, Biotechnology (2009)
  • Master of Science, Swedish University of Agricultural Sciences, Sweden, Biotechnology (2015)
  • Doctor of Philosophy, University of Turku, Finland, Molecular Immunology (2018)

Stanford Advisors


Lab Affiliations


All Publications


  • Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America Moreno-Nieves, U. Y., Tay, J. K., Saumyaa, S., Horowitz, N. B., Shin, J. H., Mohammad, I. A., Luca, B., Mundy, D. C., Gulati, G. S., Bedi, N., Chang, S., Chen, C., Kaplan, M. J., Rosenthal, E. L., Holsinger, F. C., Divi, V., Baik, F. M., Sirjani, D. B., Gentles, A. J., Newman, A. M., Freud, A. G., Sunwoo, J. B. 2021; 118 (28)

    Abstract

    Natural killer (NK) cells comprise one subset of the innate lymphoid cell (ILC) family. Despite reported antitumor functions of NK cells, their tangible contribution to tumor control in humans remains controversial. This is due to incomplete understanding of the NK cell states within the tumor microenvironment (TME). Here, we demonstrate that peripheral circulating NK cells differentiate down two divergent pathways within the TME, resulting in different end states. One resembles intraepithelial ILC1s (ieILC1) and possesses potent in vivo antitumor activity. The other expresses genes associated with immune hyporesponsiveness and has poor antitumor functional capacity. Interleukin-15 (IL-15) and direct contact between the tumor cells and NK cells are required for the differentiation into CD49a+CD103+ cells, resembling ieILC1s. These data explain the similarity between ieILC1s and tissue-resident NK cells, provide insight into the origin of ieILC1s, and identify the ieILC1-like cell state within the TME to be the NK cell phenotype with the greatest antitumor activity. Because the proportions of the different ILC states vary between tumors, these findings provide a resource for the clinical study of innate immune responses against tumors and the design of novel therapy.

    View details for DOI 10.1073/pnas.2101169118

    View details for PubMedID 34244432

  • Humanized Mouse Models for the Advancement of Innate Lymphoid Cell-Based Cancer Immunotherapies. Frontiers in immunology Horowitz, N. B., Mohammad, I., Moreno-Nieves, U. Y., Koliesnik, I., Tran, Q., Sunwoo, J. B. 2021; 12: 648580

    Abstract

    Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.

    View details for DOI 10.3389/fimmu.2021.648580

    View details for PubMedID 33968039

  • Human macrophages and innate lymphoid cells: Tissue-resident innate immunity in humanized mice BIOCHEMICAL PHARMACOLOGY Alisjahbana, A., Mohammad, I., Gao, Y., Evren, E., Ringqvist, E., Willinger, T. 2020; 174: 113672

    Abstract

    Macrophages and innate lymphoid cells (ILCs) are tissue-resident cells that play important roles in organ homeostasis and tissue immunity. Their intricate relationship with the organs they reside in allows them to quickly respond to perturbations of organ homeostasis and environmental challenges, such as infection and tissue injury. Macrophages and ILCs have been extensively studied in mice, yet important species-specific differences exist regarding innate immunity between humans and mice. Complementary to ex-vivo studies with human cells, humanized mice (i.e. mice with a human immune system) offer the opportunity to study human macrophages and ILCs in vivo within their surrounding tissue microenvironments. In this review, we will discuss how humanized mice have helped gain new knowledge about the basic biology of these cells, as well as their function in infectious and malignant conditions. Furthermore, we will highlight active areas of investigation related to human macrophages and ILCs, such as their cellular heterogeneity, ontogeny, tissue residency, and plasticity. In the near future, we expect more fundamental discoveries in these areas through the combined use of improved humanized mouse models together with state-of-the-art technologies, such as single-cell RNA-sequencing and CRISPR/Cas9 genome editing.

    View details for DOI 10.1016/j.bcp.2019.113672

    View details for Web of Science ID 000527342900003

    View details for PubMedID 31634458

  • Quantitative proteomic characterization and comparison of T helper 17 and induced regulatory T cells PLOS BIOLOGY Mohammad, I., Nousiainen, K., Bhosale, S. D., Starskaia, I., Moulder, R., Rokka, A., Cheng, F., Mohanasundaram, P., Eriksson, J. E., Goodlett, D. R., Lahdesmaki, H., Chen, Z. 2018; 16 (5): e2004194

    Abstract

    The transcriptional network and protein regulators that govern T helper 17 (Th17) cell differentiation have been studied extensively using advanced genomic approaches. For a better understanding of these biological processes, we have moved a step forward, from gene- to protein-level characterization of Th17 cells. Mass spectrometry-based label-free quantitative (LFQ) proteomics analysis were made of in vitro differentiated murine Th17 and induced regulatory T (iTreg) cells. More than 4,000 proteins, covering almost all subcellular compartments, were detected. Quantitative comparison of the protein expression profiles resulted in the identification of proteins specifically expressed in the Th17 and iTreg cells. Importantly, our combined analysis of proteome and gene expression data revealed protein expression changes that were not associated with changes at the transcriptional level. Our dataset provides a valuable resource, with new insights into the proteomic characteristics of Th17 and iTreg cells, which may prove useful in developing treatment of autoimmune diseases and developing tumor immunotherapy.

    View details for DOI 10.1371/journal.pbio.2004194

    View details for Web of Science ID 000453556600004

    View details for PubMedID 29851958

    View details for PubMedCentralID PMC5979006

  • Estrogen receptor alpha contributes to T cell-mediated autoimmune inflammation by promoting T cell activation and proliferation SCIENCE SIGNALING Mohammad, I., Starskaia, I., Nagy, T., Guo, J., Yatkin, E., Vaananen, K., Watford, W. T., Chen, Z. 2018; 11 (526)

    Abstract

    It has long been appreciated that most autoimmune disorders are characterized by increased prevalence in females, suggesting a potential role for sex hormones in the etiology of autoimmunity. To study how estrogen receptor α (ERα) contributes to autoimmune diseases, we generated mice in which ERα was deleted specifically in T lymphocytes. We found that ERα deletion in T cells reduced their pathogenic potential in a mouse model of colitis and correlated with transcriptomic changes that affected T cell activation. ERα deletion in T cells contributed to multiple aspects of T cell function, including reducing T cell activation and proliferation and increasing the expression of Foxp3, which encodes a critical transcription factor for the differentiation and function of regulatory T cells. Thus, these data demonstrate that ERα in T cells plays an important role in inflammation and suggest that ERα-targeted immunotherapies could be used to treat autoimmune disorders.

    View details for DOI 10.1126/scisignal.aap9415

    View details for Web of Science ID 000430184000003

    View details for PubMedID 29666308