Stanford Advisors


All Publications


  • Generation of two induced pluripotent stem cell lines from catecholaminergic polymorphic ventricular tachycardia patients carrying RYR2 mutations. Stem cell research Kong, X., Belbachir, N., Zeng, W., Yan, C. D., Navada, S., Perez, M. V., Wu, J. C. 2023; 69: 103111

    Abstract

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a congenital arrhythmic syndrome caused by the RYR2 gene encoded ryanodine receptor. Mutations on RYR2 are commonly associated with ventricular tachycardia after adrenergic stimulation, leading to lethal arrhythmias and sudden cardiac death. We generated two human induced pluripotent stem cell (iPSC) lines from CPVT affected patients carrying single missense heterozygote RYR2 mutations, c.1082 G > A and c.100 A > C. Pluripotency and differentiation capability into derivatives of three germ layers were evaluated along with karyotype stability in the report. The generated patient-specific iPSC lines provide a reliable tool to investigate the CPVT phenotype and understand underlaying mechanisms.

    View details for DOI 10.1016/j.scr.2023.103111

    View details for PubMedID 37210947

  • Generation of two induced pluripotent stem cell lines from spinal muscular atrophy type 1 patients carrying no functional copies of SMN1 gene. Stem cell research Zeng, W., Kong, X., Alamana, C., Liu, Y., Guzman, J., Pang, P. D., Day, J. W., Wu, J. C. 2023; 69: 103095

    Abstract

    Spinal muscular atrophy (SMA) is a severe neurodegenerative muscular disease caused by the homozygous loss of survival of motor neuron 1 (SMN1) genes. SMA patients exhibit marked skeletal muscle (SKM) loss, eventually leading to death. Here we generated two iPSC lines from two SMA type I patients with homozygous SMN1 mutations and validated the pluripotency and the ability to differentiate into three germ layers. The iPSC lines can be applied to generate skeletal muscles to model muscle atrophy of SMA that persists after treatment of motor neurons and will serve as a complementary platform for drug screening in vitro.

    View details for DOI 10.1016/j.scr.2023.103095

    View details for PubMedID 37087898