Clinical Focus


  • Ophthalmology

Academic Appointments


  • Clinical Instructor, Ophthalmology

Professional Education


  • Residency: Geisinger Health Systems (2023) PA
  • Internship: NorthShore University Health System Transitional Year Internship (2016) IL
  • Medical Education: University of Texas Southwestern Medical School Registrar (2015) TX

All Publications


  • Structural and Functional Changes in Non-Paraneoplastic Autoimmune Retinopathy. Diagnostics (Basel, Switzerland) Akhavanrezayat, A., Khatri, A., Onghanseng, N. G., Halim, M. S., Or, C., Sredar, N., Razeen, M., Hasanreisoglu, M., Regenold, J., Thng, Z. X., Mohammadi, S. S., Jain, T., Yavari, N., Bazojoo, V., Gupta, A. S., Mobasserian, A., Yasar, C., Than, N. T., Uludag Kirimli, G., Karaca, I., Shin, Y., Yoo, W., Ghoraba, H., Do, D. V., Dubra, A., Nguyen, Q. D. 2023; 13 (21)

    Abstract

    BACKGROUND: To describe longitudinal changes in patients with non-paraneoplastic autoimmune retinopathy (npAIR) by utilizing different diagnostic modalities/tests.METHODS: The index study is a retrospective longitudinal review of sixteen eyes of eight patients from a tertiary care eye hospital diagnosed with npAIR. Multiple diagnostic modalities such as wide-angle fundus photography (WAFP), WA fundus autofluorescence (WAFAF), spectral-domain optical coherence tomography (SD-OCT), Goldmann visual field (GVF) perimetry, microperimetry (MP), electrophysiologic testing, and adaptive optics scanning laser ophthalmoscopy (AOSLO) were reviewed and analyzed.RESULTS: At the baseline visits, anomalies were detected by multimodal diagnostic tests on all patients. Subjects were followed up for a median duration of 11.5 [3.0-18.7] months. Structural changes at the baseline were detected in 14 of 16 (87.5%) eyes on WAFP and WAFAF and 13 of 16 (81.2%) eyes on SD-OCT. Eight of the ten (80%) eyes that underwent AOSLO imaging depicted structural changes. Functional changes were detected in 14 of 16 (87.5%) eyes on GVF, 15 of 16 (93.7%) eyes on MP, and 11 of 16 (68.7%) eyes on full-field electroretinogram (ff-ERG). Multifocal electroretinogram (mf-ERG) and visual evoked potential (VEP) tests were performed in 14 eyes, of which 12 (85.7%) and 14 (100%) of the eyes demonstrated functional abnormalities, respectively, at baseline. Compared to all the other structural diagnostic tools, AOSLO had a better ability to demonstrate deterioration in retinal microstructures occurring at follow-ups. Functional deterioration at follow-up was detected on GVF in 8 of 10 (80%) eyes, mf-ERG in 4 of 8 (50%) eyes, and MP in 7 of 16 (43.7%) eyes. The ff-ERG and VEP were stable in the majority of cases at follow-up.CONCLUSIONS: The utilization of multimodal imaging/tests in the diagnosing and monitoring of npAIR patients can aid in identifying anomalous changes over time. Analysis of both the anatomical and functional aspects by these devices can be supportive of detecting the changes early in such patients. AOSLO shows promise as it enables the capture of high-resolution images demonstrating quantifiable changes to retinal microstructure.

    View details for DOI 10.3390/diagnostics13213376

    View details for PubMedID 37958272

  • Human Adipose Derived Stromal Cells Heal Critical Size Mouse Calvarial Defects PLOS ONE Levi, B., James, A. W., Nelson, E. R., Vistnes, D., Wu, B., Lee, M., Gupta, A., Longaker, M. T. 2010; 5 (6)

    Abstract

    Human adipose-derived stromal cells (hASCs) represent a multipotent cell stromal cell type with proven capacity to differentiate along an osteogenic lineage. This suggests that they may be used to heal defects of the craniofacial or appendicular skeleton. We sought to substantiate the use of undifferentiated hASCs in the regeneration of a non-healing mouse skeletal defect.Human ASCs were harvested from female lipoaspirate. Critical-sized (4 mm) calvarial defects were created in the parietal bone of adult male nude mice. Defects were either left empty, treated with an apatite coated PLGA scaffold alone, or a scaffold with human ASCs. MicroCT scans were obtained at stratified time points post-injury. Histology, in situ hybridization, and histomorphometry were performed. Near complete healing was observed among hASC engrafted calvarial defects. This was in comparison to control groups that showed little healing (*P<0.01). Human ASCs once engrafted differentiate down an osteogenic lineage, determined by qRT-PCR and histological co-expression assays using GFP labeled cells. ASCs were shown to persist within a defect site for two weeks (shown by sex chromosome analysis and quantified using Luciferase+ ASCs). Finally, rBMP-2 was observed to increase hASC osteogenesis in vitro and osseous healing in vivo.Human ASCs ossify critical sized mouse calvarial defects without the need for pre-differentiation. Recombinant differentiation factors such as BMP-2 may be used to supplement hASC mediated repair. Interestingly, ASC presence gradually dissipates from the calvarial defect site. This study supports the potential translation for ASC use in the treatment of human skeletal defects.

    View details for DOI 10.1371/journal.pone.0011177

    View details for Web of Science ID 000278886300019

    View details for PubMedID 20567510

    View details for PubMedCentralID PMC2887361