Professional Education


  • Master of Science, University of Virginia (2010)
  • Bachelor of Science, University of Virginia (2009)
  • Doctor of Philosophy, California Institute of Technology (2016)

Stanford Advisors


All Publications


  • Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area NATURE CATALYSIS Wang, L., Nitopi, S., Wong, A. B., Snider, J. L., Nielander, A. C., Morales-Guio, C. G., Orazov, M., Higgins, D. C., Hahn, C., Jaramillo, T. F. 2019; 2 (8): 702–8
  • Electro-Oxidation of Methane on Platinum under Ambient Conditions ACS CATALYSIS Boyd, M. J., Latimer, A. A., Dickens, C. F., Nielander, A. C., Hahn, C., Norskov, J. K., Higgins, D. C., Jaramillo, T. F. 2019; 9 (8): 7578–87
  • A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques ACS CATALYSIS Nielander, A. C., McEnaney, J. M., Schwalbe, J. A., Baker, J. G., Blair, S. J., Wang, L., Pelton, J. G., Andersen, S. Z., Enemark-Rasmussen, K., Colic, V., Yang, S., Bent, S. F., Cargnello, M., Kibsgaard, J., Vesborg, P. K., Chorkendorff, I., Jaramillo, T. F. 2019; 9 (7): 5797–5802
  • A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature Andersen, S. Z., Colic, V., Yang, S., Schwalbe, J. A., Nielander, A. C., McEnaney, J. M., Enemark-Rasmussen, K., Baker, J. G., Singh, A. R., Rohr, B. A., Statt, M. J., Blair, S. J., Mezzavilla, S., Kibsgaard, J., Vesborg, P. C., Cargnello, M., Bent, S. F., Jaramillo, T. F., Stephens, I. E., Norskov, J. K., Chorkendorff, I. 2019

    Abstract

    The electrochemical synthesis of ammonia from nitrogen under mild conditions and using renewable electricity is in principle an attractive alternative1-4 to the demanding, energy-intense Haber-Bosch process, which dominates industrial ammonia production. However, the electrochemical alternative faces considerable scientific and technical challenges5,6 and most experimental studies reported thus far achieve only low selectivities and conversions. In fact, the amount of ammonia produced is usually so small that it is difficult to firmly attribute it to electrochemical nitrogen fixation7-9 and exclude contamination due to ammonia that is either present in air, human breath or ion-conducting membranes9, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream10, in the atmosphere or even the catalyst itself. Although these many and varied sources of potential experimental artefacts are beginning to be recognized and dealt with11,12, concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments to identify and then eliminate or quantify contamination sources. Here we put forward such a rigorous procedure that, by making essential use of 15N2, allows us to reliably detect and quantify the electroreduction of N2 to NH3. We demonstrate experimentally the significance of various sources of contamination and show how to remove labile nitrogen-containing compounds present in the N2 gas and how to perform quantitative isotope measurements with cycling of 15N2 gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we obtain negative results when using the most promising pure metal catalysts in aqueous media, and successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran13.

    View details for DOI 10.1038/s41586-019-1260-x

    View details for PubMedID 31117118

  • Quantitative protocol for the electroreduction of N2 to NH3 under ambient conditions Stephens, I., Andersen, S., Colic, V., Yang, S., Schwalbe, J., Nielander, A., McEnaney, J., Enemark-Rasmussen, K., Baker, J., Singh, A., Rohr, B., Blair, S., Mezzavilla, S., Kibsgaard, J., Vesborg, P., Cargnello, M., Bent, S., Jaramillo, T., Norskov, J., Chorkendorff, I. AMER CHEMICAL SOC. 2019
  • Proton control in electrochemical ammonia synthesis Schwalbe, J., Singh, A., Rohr, B., Statt, M., Nielander, A., McEnaney, J., Andersen, S., Colic, V., Yang, S., Chorkendorff, I., Jaramillo, T., Norskov, J., Cargnello, M. AMER CHEMICAL SOC. 2019
  • Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes ACS APPLIED NANO MATERIALS Hellstern, T. R., Nielander, A. C., Chakthranont, P., King, L. A., Willis, J. J., Xu, S., MacIsaac, C., Hahn, C., Bent, S. F., Prinz, F. B., Jaramillo, T. F. 2019; 2 (1): 6–11
  • Electrochemical cycling strategy for selective and sustainable C2H2 production from CO2 or CH4 at atmospheric pressure using H2O McEnaney, J., Rohr, B., Nielander, A., Singh, A., Norskov, J., Jaramillo, T. AMER CHEMICAL SOC. 2018