Bio


Dr Natan leads the Non-Periodic ultrafast X-ray Imaging group at the Stanford PULSE Institute, where the research focuses on imaging ultrafast atomic motion in systems that interact with complex fields and environments, mostly using ultrafast X-ray FEL pulses. The purpose of this research is to study light-matter interaction in the shortest length and timescales, to uncover the interplay between correlated electronic motion and relaxation, nuclear motion, and photo-absorption processes. The research team develops experimental and computational tools to image quantum dynamics at the atomic scale, with the aim to overcome the limits of current approaches that rely on modeling and simulation. The research also leverages recent advances in ultrafast x-ray lasers, like the LCLS at SLAC National Accelerator Laboratory, and helps develop effective protocols, new modalities, detection schemes, and demonstrates important new capabilities as soon as they become feasible. In addition, Dr Natan is the co-PI of the Strong Field AMO physics task at PULSE, where he studies strong-field light-matter interaction in atoms and molecules, in particular, light-induced conical intersections, imaging strong-field ionization dynamics, and attosecond electronic delays.

Dr Natan received his PhD in Physics from the Weizmann Institute of Science, where he worked with Prof. Yaron Silberberg on coherent control, strong field interaction, nonlinear spectroscopy, and quantum optics. He was later a postdoctoral fellow at PULSE under the supervision of Prof. Phil Bucksbaum working on strong field AMO physics, and ultrafast X-ray science.

All Publications


  • Disentangling the subcycle electron momentum spectrum in strong-field ionization PHYSICAL REVIEW RESEARCH Werby, N., Natan, A., Forbes, R., Bucksbaum, P. H. 2021; 3 (2)
  • Resolving multiphoton processes with high-order anisotropy ultrafast X-ray scattering. Faraday discussions Natan, A., Schori, A., Owolabi, G., Cryan, J. P., Glownia, J. M., Bucksbaum, P. H. 2021

    Abstract

    We present the first results on experimentally measured ultrafast X-ray scattering of strongly driven molecular iodine and analysis of high-order anisotropic components of the scattering signal. We discuss the technical details of retrieving high fidelity high-order anisotropy components from the measured scattering data and outline a method to analyze such signals using Legendre decomposition. We describe how anisotropic motions can be extracted from the various Legendre orders using simulated anisotropic scattering signals and Fourier analysis. We implement the method on the measured signal and observe a multitude of dissociation and vibration motions simultaneously arising from various multiphoton transitions occurring in the sample. We use the anisotropic scattering information to disentangle the different processes and assign their dissociation velocities on the Angstrom and femtosecond scales de novo.

    View details for DOI 10.1039/d0fd00126k

    View details for PubMedID 33565543

  • Electronic Population Transfer via Impulsive Stimulated X-Ray Raman Scattering with Attosecond Soft-X-Ray Pulses PHYSICAL REVIEW LETTERS O'Neal, J. T., Champenois, E. G., Oberli, S., Obaid, R., Al-Haddad, A., Barnard, J., Berrah, N., Coffee, R., Duris, J., Galinis, G., Garratt, D., Glownia, J. M., Haxton, D., Ho, P., Li, S., Li, X., MacArthur, J., Marangos, J. P., Natan, A., Shivaram, N., Slaughter, D. S., Walter, P., Wandel, S., Young, L., Bostedt, C., Bucksbaum, P. H., Picon, A., Marinelli, A., Cryan, J. P. 2020; 125 (7)
  • Characterizing Multiphoton Excitation Using Time-Resolved X-ray Scattering PHYSICAL REVIEW X Bucksbaum, P. H., Ware, M. R., Natan, A., Cryan, J. P., Glownia, J. M. 2020; 10 (1)
  • X-ray diffractive imaging of controlled gas-phase molecules: Toward imaging of dynamics in the molecular frame. The Journal of chemical physics Kierspel, T., Morgan, A., Wiese, J., Mullins, T., Aquila, A., Barty, A., Bean, R., Boll, R., Boutet, S., Bucksbaum, P., Chapman, H. N., Christensen, L., Fry, A., Hunter, M., Koglin, J. E., Liang, M., Mariani, V., Natan, A., Robinson, J., Rolles, D., Rudenko, A., Schnorr, K., Stapelfeldt, H., Stern, S., Thogersen, J., Yoon, C. H., Wang, F., Kupper, J. 2020; 152 (8): 084307

    Abstract

    We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV (lambda 130 pm) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the Cornell-SLAC pixel array detector, and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to be within 5%. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data, which should be readily available at upcoming high-repetition-rate facilities.

    View details for DOI 10.1063/1.5133963

    View details for PubMedID 32113333

  • Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser NATURE PHOTONICS Duris, J., Li, S., Driver, T., Champenois, E. G., MacArthur, J. P., Lutman, A. A., Zhang, Z., Rosenberger, P., Aldrich, J. W., Coffee, R., Coslovich, G., Decker, F., Glownia, J. M., Hartmann, G., Helml, W., Kamalov, A., Knurr, J., Krzywinski, J., Lin, M., Nantel, M., Natan, A., O'Neal, J., Shivaram, N., Walter, P., Wang, A., Welch, J. J., Wolf, T. A., Xu, J. Z., Kling, M. F., Bucksbaum, P. H., Zholents, A., Huang, Z., Cryan, J. P., Marinelli, A., Marangos, J. P. 2020; 14 (1): 30-+
  • Electronic Population Transfer via Impulsive Stimulated X-Ray Raman Scattering with Attosecond Soft-X-Ray Pulses. Physical review letters O'Neal, J. T., Champenois, E. G., Oberli, S. n., Obaid, R. n., Al-Haddad, A. n., Barnard, J. n., Berrah, N. n., Coffee, R. n., Duris, J. n., Galinis, G. n., Garratt, D. n., Glownia, J. M., Haxton, D. n., Ho, P. n., Li, S. n., Li, X. n., MacArthur, J. n., Marangos, J. P., Natan, A. n., Shivaram, N. n., Slaughter, D. S., Walter, P. n., Wandel, S. n., Young, L. n., Bostedt, C. n., Bucksbaum, P. H., Picón, A. n., Marinelli, A. n., Cryan, J. P. 2020; 125 (7): 073203

    Abstract

    Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.

    View details for DOI 10.1103/PhysRevLett.125.073203

    View details for PubMedID 32857563

  • Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Physical chemistry chemical physics : PCCP Driver, T., Li, S., Champenois, E. G., Duris, J., Ratner, D., Lane, T. J., Rosenberger, P., Al-Haddad, A., Averbukh, V., Barnard, T., Berrah, N., Bostedt, C., Bucksbaum, P. H., Coffee, R., DiMauro, L. F., Fang, L., Garratt, D., Gatton, A., Guo, Z., Hartmann, G., Haxton, D., Helml, W., Huang, Z., LaForge, A., Kamalov, A., Kling, M. F., Knurr, J., Lin, M., Lutman, A. A., MacArthur, J. P., Marangos, J. P., Nantel, M., Natan, A., Obaid, R., O'Neal, J. T., Shivaram, N. H., Schori, A., Walter, P., Li Wang, A., Wolf, T. J., Marinelli, A., Cryan, J. P. 2019

    Abstract

    The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

    View details for DOI 10.1039/c9cp03951a

    View details for PubMedID 31793561

  • On the limits of observing motion in time-resolved X-ray scattering PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES Ware, M. R., Glownia, J. M., Natan, A., Cryan, J. P., Bucksbaum, P. H. 2019; 377 (2145)
  • On the limits of observing motion in time-resolved X-ray scattering. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences Ware, M. R., Glownia, J. M., Natan, A., Cryan, J. P., Bucksbaum, P. H. 2019; 377 (2145): 20170477

    Abstract

    Limits on the ability of time-resolved X-ray scattering (TRXS) to observe harmonic motion of amplitude, A and frequency, omega0, about an equilibrium position, R0, are considered. Experimental results from a TRXS experiment at the LINAC Coherent Light Source are compared to classical and quantum theories that demonstrate a fundamental limitation on the ability to observe the amplitude of motion. These comparisons demonstrate dual limits on the spatial resolution through Qmax and the temporal resolution through omegamax for observing the amplitude of motion. In the limit where omegamax omega0, the smallest observable amplitude of motion is A=2 pi/ Qmax. In the limit where omegamax≥2 omega0, A≤2 pi/ Qmax is observable provided there are sufficient statistics. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

    View details for PubMedID 30929636

  • Generation and Characterization of Attosecond Pulses from an X-ray Free-electron Laser Li, S., Rosenberger, P., Champenois, E. G., Driver, T., Bucksbaum, P. H., Coffee, R., Gatton, A., Hartmann, G., Helml, W., Huang, Z., Knurr, J., Kling, M. F., Lin, M., MacArthur, J. P., Maxwell, T. J., Nantel, M., Natan, A., Oneal, J. T., Shivaram, N. H., Walter, P., Wolf, T. A., Cryan, J. P., Marinelli, A., IEEE IEEE. 2019
  • Characterizing isolated attosecond pulses with angular streaking OPTICS EXPRESS Li, S., Guo, Z., Coffee, R. N., Hegazy, K., Huang, Z., Natan, A., Osipov, T., Ray, D., Marinelli, A., Cryan, J. P. 2018; 26 (4): 4531–47

    Abstract

    We present a reconstruction algorithm for isolated attosecond pulses, which exploits the phase dependent energy modulation of a photoelectron ionized in the presence of a strong laser field. The energy modulation due to a circularly polarized laser field is manifest strongly in the angle-resolved photoelectron momentum distribution, allowing for complete reconstruction of the temporal and spectral profile of an attosecond burst. We show that this type of reconstruction algorithm is robust against counting noise and suitable for single-shot experiments. This algorithm holds potential for a variety of applications for attosecond pulse sources.

    View details for DOI 10.1364/OE.26.004531

    View details for Web of Science ID 000426268500073

    View details for PubMedID 29475303

  • Imaging the breakdown of molecular-frame dynamics through rotational uncoupling PHYSICAL REVIEW A Zipp, L. J., Natan, A., Bucksbaum, P. H. 2017; 95 (6)
  • Observation of Quantum Interferences via Light-Induced Conical Intersections in Diatomic Molecules PHYSICAL REVIEW LETTERS Natan, A., Ware, M. R., Prabhudesai, V. S., Lev, U., Bruner, B. D., Heber, O., Bucksbaum, P. H. 2016; 116 (14)

    Abstract

    We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H_{2}^{+}. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed two-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state and the cone apex. These findings are supported by numerical solutions of the time-dependent Schrödinger equation for similar experimental conditions.

    View details for DOI 10.1103/PhysRevLett.116.143004

    View details for Web of Science ID 000373587500007

    View details for PubMedID 27104704

  • Observing the Uncoupling of Electron Motion from the Molecular Frame in Photoelectron Angular Distributions Zipp, L., Natan, A., Bucksbaum, P., IEEE IEEE. 2016
  • Strongly aligned gas-phase molecules at free-electron lasers JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS Kierspel, T., Wiese, J., Mullins, T., Robinson, J., Aquila, A., Barty, A., Bean, R., Boll, R., Boutet, S., Bucksbaum, P., Chapman, H. N., Christensen, L., Fry, A., Hunter, M., Koglin, J. E., Liang, M., Mariani, V., Morgan, A., Natan, A., Petrovic, V., Rolles, D., Rudenko, A., Schnorr, K., Stapelfeldt, H., Stern, S., Thogersen, J., Yoon, C. H., Wang, F., Trippel, S., Kuepper, J. 2015; 48 (20)
  • Ultrafast isomerization initiated by X-ray core ionization. Nature communications Liekhus-Schmaltz, C. E., Tenney, I., Osipov, T., Sanchez-Gonzalez, A., Berrah, N., Boll, R., Bomme, C., Bostedt, C., Bozek, J. D., Carron, S., Coffee, R., Devin, J., Erk, B., Ferguson, K. R., Field, R. W., Foucar, L., Frasinski, L. J., Glownia, J. M., Gühr, M., Kamalov, A., Krzywinski, J., Li, H., Marangos, J. P., Martinez, T. J., McFarland, B. K., Miyabe, S., Murphy, B., Natan, A., Rolles, D., Rudenko, A., Siano, M., Simpson, E. R., Spector, L., Swiggers, M., Walke, D., Wang, S., Weber, T., Bucksbaum, P. H., Petrovic, V. S. 2015; 6: 8199-?

    Abstract

    Rapid proton migration is a key process in hydrocarbon photochemistry. Charge migration and subsequent proton motion can mitigate radiation damage when heavier atoms absorb X-rays. If rapid enough, this can improve the fidelity of diffract-before-destroy measurements of biomolecular structure at X-ray-free electron lasers. Here we study X-ray-initiated isomerization of acetylene, a model for proton dynamics in hydrocarbons. Our time-resolved measurements capture the transient motion of protons following X-ray ionization of carbon K-shell electrons. We Coulomb-explode the molecule with a second precisely delayed X-ray pulse and then record all the fragment momenta. These snapshots at different delays are combined into a 'molecular movie' of the evolving molecule, which shows substantial proton redistribution within the first 12 fs. We conclude that significant proton motion occurs on a timescale comparable to the Auger relaxation that refills the K-shell vacancy.

    View details for DOI 10.1038/ncomms9199

    View details for PubMedID 26354002

  • Experimental Signature of Light Induced Conical Intersections in Diatomics Natan, A., Ware, M. R., Bucksbaum, P. H., Yamanouchi, Cundiff, S., DeVivieRiedle, R., KuwataGonokami, M., DiMauro, L. SPRINGER-VERLAG BERLIN. 2015: 122–25
  • Probing electron delays in above-threshold ionization OPTICA Zipp, L. J., Natan, A., Bucksbaum, P. H. 2014; 1 (6): 361-364
  • Experimental Observation of Light Induced Conical Intersections in a Diatomic Molecule Natan, A., Ware, M. R., Bucksbaum, P. H., IEEE IEEE. 2014
  • Quantum control of photodissociation by manipulation of bond softening PHYSICAL REVIEW A Natan, A., Lev, U., Prabhudesai, V. S., Bruner, B. D., Strasser, D., Schwalm, D., Ben-Itzhak, I., Heber, O., Zajfman, D., Silberberg, Y. 2012; 86 (4)