Amalya Johnson
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2020
All Publications
-
Hidden phonon highways promote photoinduced interlayer energy transfer in twisted transition metal dichalcogenide heterostructures.
Science advances
2024; 10 (4): eadj8819
Abstract
Vertically stacked van der Waals (vdW) heterostructures exhibit unique electronic, optical, and thermal properties that can be manipulated by twist-angle engineering. However, the weak phononic coupling at a bilayer interface imposes a fundamental thermal bottleneck for future two-dimensional devices. Using ultrafast electron diffraction, we directly investigated photoinduced nonequilibrium phonon dynamics in MoS2/WS2 at 4° twist angle and WSe2/MoSe2 heterobilayers with twist angles of 7°, 16°, and 25°. We identified an interlayer heat transfer channel with a characteristic timescale of ~20 picoseconds, about one order of magnitude faster than molecular dynamics simulations assuming initial intralayer thermalization. Atomistic calculations involving phonon-phonon scattering suggest that this process originates from the nonthermal phonon population following the initial interlayer charge transfer and scattering. Our findings present an avenue for thermal management in vdW heterostructures by tailoring nonequilibrium phonon populations.
View details for DOI 10.1126/sciadv.adj8819
View details for PubMedID 38266081
-
Photoluminescence upconversion in monolayer WSe2 activated by plasmonic cavities through resonant excitation of dark excitons.
Nature communications
2023; 14 (1): 5726
Abstract
Anti-Stokes photoluminescence (PL) is light emission at a higher photon energy than the excitation, with applications in optical cooling, bioimaging, lasing, and quantum optics. Here, we show how plasmonic nano-cavities activate anti-Stokes PL in WSe2 monolayers through resonant excitation of a dark exciton at room temperature. The optical near-fields of the plasmonic cavities excite the out-of-plane transition dipole of the dark exciton, leading to light emission from the bright exciton at higher energy. Through statistical measurements on hundreds of plasmonic cavities, we show that coupling to the dark exciton leads to a near hundred-fold enhancement of the upconverted PL intensity. This is further corroborated by experiments in which the laser excitation wavelength is tuned across the dark exciton. We show that a precise nanoparticle geometry is key for a consistent enhancement, with decahedral nanoparticle shapes providing an efficient PL upconversion. Finally, we demonstrate a selective and reversible switching of the upconverted PL via electrochemical gating. Our work introduces the dark exciton as an excitation channel for anti-Stokes PL in WSe2 and paves the way for large-area substrates providing nanoscale optical cooling, anti-Stokes lasing, and radiative engineering of excitons.
View details for DOI 10.1038/s41467-023-41401-8
View details for PubMedID 37714855
View details for PubMedCentralID PMC10504321
-
Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor.
Nature communications
2023; 14 (1): 4953
Abstract
Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials-the Janus transition metal dichalcogenides in the 1 T' phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1 T' MoSSe (e.g., > 50 times higher than 2H MoS2 for 18th order harmonic generation; > 20 times higher than 2H MoS2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.
View details for DOI 10.1038/s41467-023-40373-z
View details for PubMedID 37587120
View details for PubMedCentralID 8282873
-
A Purcell-enabled monolayer semiconductor free-space optical modulator
NATURE PHOTONICS
2023
View details for DOI 10.1038/s41566-023-01250-9
View details for Web of Science ID 001031418200001
-
Controlling Valley-Specific Light Emission from Monolayer MoS2 with Achiral Dielectric Metasurfaces.
Nano letters
2023
Abstract
Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS2 monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified. Additionally, the degree of polarization (DOP) of exciton and trion emission from the valley can be symmetrically enhanced at 100 K. The DOP increase is attributed to both the metasurface-enhanced chiral absorption of light and the metasurface-enhanced exciton emission from the Purcell effect. Combining Si-compatible photonic design with large-scale 2D materials integration, our work makes an important step toward on-chip valleytronic applications approaching room-temperature operation.
View details for DOI 10.1021/acs.nanolett.3c01630
View details for PubMedID 37347949
-
High-harmonic generation from artificially stacked 2D crystals
NANOPHOTONICS
2023
View details for DOI 10.1515/nanoph-2022-0595
View details for Web of Science ID 000909764500001
-
Floquet engineering of strongly driven excitons in monolayer tungsten disulfide
NATURE PHYSICS
2023
View details for DOI 10.1038/s41567-022-01849-9
View details for Web of Science ID 000910858200004
-
Probing electron-hole coherence in strongly driven 2D materials using high-harmonic generation
OPTICA
2022; 9 (5): 512-516
View details for DOI 10.1364/OPTICA.444105
View details for Web of Science ID 000799613700010
-
The X-Ray Cavity Around Hotspot E in Cygnus A: Tunneled by a Deflected Jet
ASTROPHYSICAL JOURNAL
2020; 891 (2)
View details for DOI 10.3847/1538-4357/ab737d
View details for Web of Science ID 000521396200001