All Publications


  • Low-energy nuclear fusion boosted by electrochemistry NATURE McKeown-Green, A., Dionne, J. A. 2025; 644 (8077): 614-615
  • Direct Exfoliation of Nanoribbons from Bulk van der Waals Crystals. Small (Weinheim an der Bergstrasse, Germany) Saunders, A. P., Chen, V., Wang, J., Li, Q., Johnson, A. C., McKeown-Green, A. S., Zeng, H. J., Mac, T. K., Trinh, M. T., Heinz, T. F., Pop, E., Liu, F. 2024: e2403504

    Abstract

    Confinement of monolayers into quasi-1D atomically thin nanoribbons could lead to novel quantum phenomena beyond those achieved in their bulk and monolayer counterparts. However, current experimental availability of nanoribbon species beyond graphene is limited to bottom-up synthesis or lithographic patterning. In this study, a versatile and direct approach is introduced to exfoliate bulk van der Waals crystals as nanoribbons. Akin to the Scotch tape exfoliation method for producing monolayers, this technique provides convenient access to a wide range of nanoribbons derived from their corresponding bulk crystals, including MoS2, WS2, MoSe2, WSe2, MoTe2, WTe2, ReS2, and hBN. The nanoribbons are predominantly monolayer, single-crystalline, parallel-aligned, flat, andexhibit high aspect ratios. The role of confinement, strain, and edge configuration of these nanoribbons is observed in their electrical, magnetic, and optical properties. This versatile exfoliation technique provides a universal route for producing a variety of nanoribbon materials and supports the study of their fundamental properties and potential applications.

    View details for DOI 10.1002/smll.202403504

    View details for PubMedID 39140377

  • Solution-phase sample-averaged single-particle spectroscopy of quantum emitters with femtosecond resolution. Nature materials Shi, J., Shen, Y., Pan, F., Sun, W., Mangu, A., Shi, C., McKeown-Green, A., Moradifar, P., Bawendi, M. G., Moerner, W. E., Dionne, J. A., Liu, F., Lindenberg, A. M. 2024

    Abstract

    The development of many quantum optical technologies depends on the availability of single quantum emitters with near-perfect coherence. Systematic improvement is limited by a lack of understanding of the microscopic energy flow at the single-emitter level and ultrafast timescales. Here we utilize a combination of fluorescence correlation spectroscopy and ultrafast spectroscopy to capture the sample-averaged dynamics of defects with single-particle sensitivity. We employ this approach to study heterogeneous emitters in two-dimensional hexagonal boron nitride. From milliseconds to nanoseconds, the translational, shelving, rotational and antibunching features are disentangled in time, which quantifies the normalized two-photon emission quantum yield. Leveraging the femtosecond resolution of this technique, we visualize electron-phonon coupling and discover the acceleration of polaronic formation on multi-electron excitation. Corroborated with theory, this translates to the photon fidelity characterization of cascaded emission efficiency and decoherence time. Our work provides a framework for ultrafast spectroscopy in heterogeneous emitters, opening new avenues of extreme-scale characterization for quantum applications.

    View details for DOI 10.1038/s41563-024-01855-7

    View details for PubMedID 38589542

    View details for PubMedCentralID 5615041

  • Millimeter-Scale Exfoliation of hBN with Tunable Flake Thickness for Scalable Encapsulation ACS APPLIED NANO MATERIALS McKeown-Green, A. S., Zeng, H. J., Saunders, A. P., Li, J., Shi, J., Shen, Y., Pan, F., Hu, J., Dionne, J. A., Heinz, T. F., Wu, S. M., Zheng, F., Liu, F. 2024