All Publications


  • Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature Palovics, R., Keller, A., Schaum, N., Tan, W., Fehlmann, T., Borja, M., Kern, F., Bonanno, L., Calcuttawala, K., Webber, J., McGeever, A., Tabula Muris Consortium, Luo, J., Pisco, A. O., Karkanias, J., Neff, N. F., Darmanis, S., Quake, S. R., Wyss-Coray, T., Almanzar, N., Antony, J., Baghel, A. S., Bakerman, I., Bansal, I., Barres, B. A., Beachy, P. A., Berdnik, D., Bilen, B., Brownfield, D., Cain, C., Chan, C. K., Chen, M. B., Clarke, M. F., Conley, S. D., Demers, A., Demir, K., de Morree, A., Divita, T., du Bois, H., Ebadi, H., Espinoza, F. H., Fish, M., Gan, Q., George, B. M., Gillich, A., Gomez-Sjoberg, R., Green, F., Genetiano, G., Gu, X., Gulati, G. S., Hahn, O., Haney, M. S., Hang, Y., Harris, L., He, M., Hosseinzadeh, S., Huang, A., Huang, K. C., Iram, T., Isobe, T., Ives, F., Jones, R. C., Kao, K. S., Karnam, G., Kershner, A. M., Khoury, N., Kim, S. K., Kiss, B. M., Kong, W., Krasnow, M. A., Kumar, M. E., Kuo, C. S., Lam, J., Lee, D. P., Lee, S. E., Lehallier, B., Leventhal, O., Li, G., Li, Q., Liu, L., Lo, A., Lu, W., Lugo-Fagundo, M. F., Manjunath, A., May, A. P., Maynard, A., McKay, M., McNerney, M. W., Merrill, B., Metzger, R. J., Mignardi, M., Min, D., Nabhan, A. N., Ng, K. M., Nguyen, P. K., Noh, J., Nusse, R., Patkar, R., Peng, W. C., Penland, L., Pollard, K., Puccinelli, R., Qi, Z., Rando, T. A., Rulifson, E. J., Segal, J. M., Sikandar, S. S., Sinha, R., Sit, R. V., Sonnenburg, J., Staehli, D., Szade, K., Tan, M., Tato, C., Tellez, K., Torrez Dulgeroff, L. B., Travaglini, K. J., Tropini, C., Tsui, M., Waldburger, L., Wang, B. M., van Weele, L. J., Weinberg, K., Weissman, I. L., Wosczyna, M. N., Wu, S. M., Xiang, J., Xue, S., Yamauchi, K. A., Yang, A. C., Yerra, L. P., Youngyunpipatkul, J., Yu, B., Zanini, F., Zardeneta, M. E., Zee, A., Zhao, C., Zhang, F., Zhang, H., Zhang, M. J., Zhou, L., Zou, J. 2022

    Abstract

    The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.

    View details for DOI 10.1038/s41586-022-04461-2

    View details for PubMedID 35236985

  • A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 2020

    Abstract

    Ageing is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death1. Despite rapid advances over recent years, many of the molecular and cellular processes that underlie the progressive loss of healthy physiology are poorly understood2. To gain a better insight into these processes, here we generate a single-cell transcriptomic atlas across the lifespan of Mus musculus that includes data from 23 tissues and organs. We found cell-specific changes occurring across multiple cell types and organs, as well as age-related changes in the cellular composition of different organs. Using single-cell transcriptomic data, we assessed cell-type-specific manifestations of different hallmarks of ageing-such as senescence3, genomic instability4 and changes in the immune system2. This transcriptomic atlas-which we denote Tabula Muris Senis, or 'Mouse Ageing Cell Atlas'-provides molecular information about how the most important hallmarks of ageing are reflected in a broad range of tissues and cell types.

    View details for DOI 10.1038/s41586-020-2496-1

    View details for PubMedID 32669714

  • Ageing hallmarks exhibit organ-specific temporal signatures. Nature Schaum, N. n., Lehallier, B. n., Hahn, O. n., Pálovics, R. n., Hosseinzadeh, S. n., Lee, S. E., Sit, R. n., Lee, D. P., Losada, P. M., Zardeneta, M. E., Fehlmann, T. n., Webber, J. T., McGeever, A. n., Calcuttawala, K. n., Zhang, H. n., Berdnik, D. n., Mathur, V. n., Tan, W. n., Zee, A. n., Tan, M. n., Pisco, A. O., Karkanias, J. n., Neff, N. F., Keller, A. n., Darmanis, S. n., Quake, S. R., Wyss-Coray, T. n. 2020

    Abstract

    Ageing is the single greatest cause of disease and death worldwide, and understanding the associated processes could vastly improve quality of life. Although major categories of ageing damage have been identified-such as altered intercellular communication, loss of proteostasis and eroded mitochondrial function1-these deleterious processes interact with extraordinary complexity within and between organs, and a comprehensive, whole-organism analysis of ageing dynamics has been lacking. Here we performed bulk RNA sequencing of 17 organs and plasma proteomics at 10 ages across the lifespan of Mus musculus, and integrated these findings with data from the accompanying Tabula Muris Senis2-or 'Mouse Ageing Cell Atlas'-which follows on from the original Tabula Muris3. We reveal linear and nonlinear shifts in gene expression during ageing, with the associated genes clustered in consistent trajectory groups with coherent biological functions-including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and inflammatory and immune response. Notably, these gene sets show similar expression across tissues, differing only in the amplitude and the age of onset of expression. Widespread activation of immune cells is especially pronounced, and is first detectable in white adipose depots during middle age. Single-cell RNA sequencing confirms the accumulation of T cells and B cells in adipose tissue-including plasma cells that express immunoglobulin J-which also accrue concurrently across diverse organs. Finally, we show how gene expression shifts in distinct tissues are highly correlated with corresponding protein levels in plasma, thus potentially contributing to the ageing of the systemic circulation. Together, these data demonstrate a similar yet asynchronous inter- and intra-organ progression of ageing, providing a foundation from which to track systemic sources of declining health at old age.

    View details for DOI 10.1038/s41586-020-2499-y

    View details for PubMedID 32669715

  • Strategies for single-molecule tracking of Sonic Hedgehog delivery to the regenerative niche in adult taste buds Lu, W., Baghel, A., Beachy, P. A. OXFORD UNIV PRESS. 2019: E61–E62
  • Dual Role of Ribosome-Binding Domain of NAC as a Potent Suppressor of Protein Aggregation and Aging-Related Proteinopathies MOLECULAR CELL Shen, K., Gamerdinger, M., Chan, R., Gense, K., Martin, E. M., Sachs, N., Knight, P. D., Schloemer, R., Calabrese, A. N., Stewart, K. L., Leiendecker, L., Baghel, A., Radford, S. E., Frydman, J., Deuerling, E. 2019; 74 (4): 729-+
  • Dual Role of Ribosome-Binding Domain of NAC as a Potent Suppressor of Protein Aggregation and Aging-Related Proteinopathies. Molecular cell Shen, K., Gamerdinger, M., Chan, R., Gense, K., Martin, E. M., Sachs, N., Knight, P. D., Schlomer, R., Calabrese, A. N., Stewart, K. L., Leiendecker, L., Baghel, A., Radford, S. E., Frydman, J., Deuerling, E. 2019

    Abstract

    The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Abeta40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the betaNAC subunit (N-betaNAC) as a major chaperone entity of NAC. N-betaNAC by itself suppressed aggregation of PolyQ-expanded proteins invitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function invivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.

    View details for PubMedID 30982745

  • Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018; 562 (7727): 367–72

    Abstract

    Here we present a compendium of single-cell transcriptomic data from the model organism Mus musculus that comprises more than 100,000 cells from 20 organs and tissues. These data represent a new resource for cell biology, reveal gene expression in poorly characterized cell populations and enable the direct and controlled comparison of gene expression in cell types that are shared between tissues, such as T lymphocytes and endothelial cells from different anatomical locations. Two distinct technical approaches were used for most organs: one approach, microfluidic droplet-based 3'-end counting, enabled the survey of thousands of cells at relatively low coverage, whereas the other, full-length transcript analysis based on fluorescence-activated cell sorting, enabled the characterization of cell types with high sensitivity and coverage. The cumulative data provide the foundation for an atlas of transcriptomic cell biology.

    View details for DOI 10.1038/s41586-018-0590-4

    View details for PubMedID 30283141

  • Bifunctional Anti-Non-Amyloid Component alpha-Synuclein Nanobodies Are Protective In Situ PLOS ONE Butler, D. C., Joshi, S. N., de Genst, E., Baghel, A. S., Dobson, C. M., Messer, A. 2016; 11 (11)

    Abstract

    Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn) are closely associated with synucleinopathies, including Parkinson's disease (PD). VH14 is a human single domain intrabody selected against the non-amyloid component (NAC) hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.

    View details for DOI 10.1371/journal.pone.0165964

    View details for Web of Science ID 000387615200051

    View details for PubMedCentralID PMC5100967