All Publications


  • Spatially Controlled Uv Light Generation at Depth Using Upconversion Micelles. Advanced materials (Deerfield Beach, Fla.) Zhou, Q., Wirtz, B. M., Schloemer, T. H., Burroughs, M. C., Hu, M., Narayanan, P., Lyu, J., Gallegos, A. O., Layton, C., Mai, D. J., Congreve, D. N. 2023: e2301563

    Abstract

    Ultraviolet (UV) light can trigger a plethora of useful photochemical reactions for diverse applications, including photocatalysis, photopolymerization, and drug delivery. These applications typically require penetration of high energy photons deep into materials, yet delivering these photons beyond the surface is extremely challenging due to absorption and scattering effects. Triplet-triplet annihilation upconversion (TTA-UC) shows great promise to circumvent this issue by generating high energy photons from incident lower energy photons. However, molecules that facilitate TTA-UC usually have poor water solubility, limiting their deployment in aqueous environments. To address this challenge, a nanoencapsulation method is leveraged to fabricate water-compatible UC micelles, enabling on-demand UV photon generation deep into materials. Two iridium-based complexes are presented for use as TTA-UC sensitizers with increased solubilities that facilitate the formation of highly emissive UV-upconverting micelles. Furthermore, this encapsulation method is shown to be generalizable to nineteen UV-emitting UC systems, accessing a range of upconverted UV emission profiles with wavelengths as low as 350 nm. As a proof-of-principle demonstration of precision photochemistry at depth, UV-emitting UC micelles are used to photolyze a fluorophore at a focal point nearly a centimeter beyond the surface, revealing opportunities for spatially controlled manipulation deep into UV-responsive materials. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/adma.202301563

    View details for PubMedID 37548335

  • Water additives improve the efficiency of violet perovskite light-emitting diodes MATTER Hu, M., Fernandez, S., Zhou, Q., Narayanan, P., Saini, B., Schloemer, T. H., Lyu, J., Gallegos, A. O., Ahmed, G. H., Congreve, D. N. 2023; 6 (7): 2356-2367
  • Triplet Fusion Upconversion Nanocapsule Synthesis. Journal of visualized experiments : JoVE Schloemer, T. H., Sanders, S. N., Zhou, Q., Narayanan, P., Hu, M., Gangishetty, M. K., Anderson, D., Seitz, M., Gallegos, A. O., Stokes, R. C., Congreve, D. N. 2022

    Abstract

    Triplet fusion upconversion (UC) allows for the generation of one high energy photon from two low energy input photons. This well-studied process has significant implications for producing high energy light beyond a material's surface. However, the deployment of UC materials has been stymied due to poor material solubility, high concentration requirements, and oxygen sensitivity, ultimately resulting in reduced light output. Toward this end, nanoencapsulation has been a popular motif to circumvent these challenges, but durability has remained elusive in organic solvents. Recently, a nanoencapsulation technique was engineered to tackle each of these challenges, whereupon an oleic acid nanodroplet containing upconversion materials was encapsulated with a silica shell. Ultimately, these nanocapsules (NCs) were durable enough to enable triplet fusion upconversion-facilitated volumetric three-dimensional (3D) printing. By encapsulating upconversion materials with silica and dispersing them in a 3D printing resin, photopatterning beyond the surface of the printing vat was made possible. Here, video protocols for the synthesis of upconversion NCs are presented for both small-scale and large-scale batches. The outlined protocols serve as a starting point for adapting this encapsulation scheme to multiple upconversion schemes for use in volumetric 3D printing applications.

    View details for DOI 10.3791/64374

    View details for PubMedID 36155426

  • Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature Sanders, S. N., Schloemer, T. H., Gangishetty, M. K., Anderson, D., Seitz, M., Gallegos, A. O., Stokes, R. C., Congreve, D. N. 2022; 604 (7906): 474-478

    Abstract

    Three-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications1-6, with stereolithography a particularly successful approach4,7-9. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion3,7-9. Using two-photon absorption, many groups and companies have been able to create remarkable nanoscale structures4,5, but the laser powerrequired to drive this process has limited print size and speed, preventing widespread application beyond the nanoscale. Here we use triplet fusion upconversion10-13 to print volumetrically with less than 4milliwatt continuous-wave excitation. Upconversion is introduced to the resin by means of encapsulation with a silica shell and solubilizing ligands. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities several orders of magnitude lower than the power densities required for two-photon-based 3D printing.

    View details for DOI 10.1038/s41586-022-04485-8

    View details for PubMedID 35444324

  • Reflections on hosting summer undergraduate researchers in the midst of a pandemic. Matter Gallegos, A. O., Ahmed, G. H., Schloemer, T. H., Congreve, D. N. 2021; 4 (10): 3074-3077

    Abstract

    The COVID-19 pandemic continues to impact nearly every aspect of our lives, including academic research. In this Matter of Opinion, we reflect on hosting both in-person and virtual undergraduate students during these challenging times.

    View details for DOI 10.1016/j.matt.2021.09.013

    View details for PubMedID 34632371