All Publications


  • Computation-Guided Rational Design of a Peptide Motif That Reacts with Cyanobenzothiazoles via Internal Cysteine-Lysine Relay JOURNAL OF ORGANIC CHEMISTRY Keyser, S. L., Utz, A., Bertozzi, C. R. 2018; 83 (14): 7467–79

    Abstract

    Site-selective protein modification based on covalent reactions of peptide tags and small molecules is a key capability for basic research as well as for the development of new therapeutic bioconjugates. Here, we describe the computation-guided rational design of a cysteine- and lysine-containing 11-residue peptide sequence that reacts with 2-cyanobenzothiazole (CBT) derivatives. Our data show that the cysteine residue reversibly reacts with the nitrile group on the CBT moiety to form an intermediate thioimidate, which undergoes irreversible SN transfer to the lysine residue, yielding an amidine-linked product. The concepts outlined herein lay a foundation for future development of peptide tags in the context of site-selective modification of lysine residues within engineered microenvironments.

    View details for DOI 10.1021/acs.joc.8b00625

    View details for Web of Science ID 000439761100020

    View details for PubMedID 29771122

  • Synthesis of solvatochromic probes to label the mycobacterial cell wall and their use in studies of host-pathogen interactions Keyser, S., Utz, A., Kamariza, M., Bertozzi, C. AMER CHEMICAL SOC. 2017
  • Synthesis of solvatochromic probes to study the effect of host microenvironment on mycobacterial cell wall dynamics during infection Keyser, S., Utz, A., Bertozzi, C. AMER CHEMICAL SOC. 2017
  • Synthesis of solvatochromic probes to label the mycobacterial cell wall Utz, A., Keyser, S., Bertozzi, C. AMER CHEMICAL SOC. 2017